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1 Introduction

In the nanoCOPS project, there are three scientific work packages: WP1 on time-
domain simulation of coupled problems, WP2 on uncertainty quantification and WP3
on validation, demonstration and measurements. This final report summarizes the
achievements within the second work package on uncertainty quantification (UQ). The
scientific word is organized within seven tasks. In WP2, the deliverables [1, 2, 3, 4, 5, 6,
7] and the milestones [8, 9, 10] provided intermediate results about the development.
Moreover, deliverable D2.7 [7] also represents a final reporting on the implementations
of algorithms for the tasks in WP2. The validation is still ongoing. Overviews of the
progress within the whole project are published in [40, 41, 46, 47], where parts were
dedicated to UQ.

In the previous years, more attention has been devoted to the field of UQ in scien-
tific computing and engineering. In procedures of an industrial production, undesired
variations typically appear due to imperfections. Thus a mathematical model and an
associated numerical simulation shall quantify the variations to confirm or disprove the
reliability of produced devices. Now the aim of WP2 is to employ the concepts of UQ
to problems in nanoelectronics and applications relevant for electronics industry in Eu-
rope.

In nanoelectronics, multiphysics problems occur, where different effects like electro-
magnetics, heat transport, mechanical stress and complex semiconductor behavior,
for example, are coupled. Here the multiphysics problems include differential algebraic
equations and partial differential equations. Often the numerical simulation of the cou-
pled system consists of a transient analysis, where either a monolithic integration or a
dynamic iteration is used in the time domain. In WP2, uncertainties are considers by
the introduction of random variables into the multiphysics problems, which represents
the most common approach in UQ, see [84]. Consequently, stochastic models have to
be solved. Both intrusive and non-intrusive methods exist for a numerical simulation.
However, the complexity of the coupled problems often requires to adapt the general
numerical approaches to the specific structure of the nanoelectronic applications. Fig-
ure 1 sketches our concepts for the numerical simulations in UQ.

The work package on UQ tackles several challenges in the general field of scientific
computing as well as the particular field of nanoelectronics. The multiphysics nature
of the nanoelectronic problems yields coupled systems, where the different type of the
subsystems causes multiscale and multirate effects. The achievement of an efficient
numerical simulation represents a sophisticated task already in the case of determinis-
tic parameters. Now WP2 even considers the multiphysics problems including random
variables and random processes. Furthermore, WP2 investigates the determination
of small failure probabilities to confirm the reliability of an industrial production in the
case of tiny defect ratios. Since the variations of a manufacturing procedure may not
obey traditional random distributions, the fitting of probability distributions functions
or, equivalently, probability density function is performed with respect to measurement
data from the industrial partners.

The following seven sections are dedicated to the tasks T2.1-T2.7 of Work Package 2.
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Figure 1: Concepts for numerical simulation in Uncertainty Quantification [4].
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2 Quantification of uncertainties in device materials, geometry
and boundary conditions

In this section, we consider the stochastic modeling for materials, geometry and bound-
ary conditions in spatial domains. The results are used in multiphysics problems for the
parts consisting of partial differential equations. This topic corresponds to Task T2.1.

2.1 Connection to test cases and deliverables

Link to test cases :

• Test case 1/2a A realistic size power MOS at constant temperature / in ET cou-
pling mode

• Test case 2b A driver chip with multiple heat-sources

• Test case 4a An 8-shaped inductor

• Test case 4b ACCO inductor

• Test case 5 A fast and reliable model for bondwire heating

• Test case 7 Reliable RFIC Isolation

• Test case 12 Transformer (academic benchmark for weakly and strongly coupled
field/circuit problems)

Link to WP2 deliverables :

• D2.1 Intermediate Report on Models and algorithms for quantification of uncer-
tainties in materials, geometry and boundaries of devices

• D2.7 Algorithms implemented in software packages for all Tasks 2.1-2.6.

2.2 Reasons for uncertainty quantification in electronic devices

Due to the ongoing miniaturization and imperfections in manufacturing processes, the
production of electronics system is affected by undesired variations of material, geo-
metrical and environmental parameters like a temperature at the devices boundaries,
for example. On one hand, at this stage of work, a special attention was given on
material uncertainties in the nonlinear material constitutive law, e.g., reluctivity of core
made of soft iron in electronic transformer, which belong to the most influential source
of uncertainties in several applications [4, 60]. We investigated this problem by us-
ing Karhunen-Loève and a spline representation of the constitutive law. On the other
hand, since in many applications, the physical domain cannot be determined precisely,
uncertainties in the geometry such as an interface between two different materials or
boundaries of the computational domain have been taken into account in simulations.
To deal with this problem either topologically preserved method such as a mapping
of random domain to the fixed domain or the topological method such the level set
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or topological gradient method can be applied. In our case, due to some technical
software restrictions and mainly the MAGWEL preferences, the random representation
by the topological methods was beneficial and easier in the implementation [62, 63].
Additionally, the variablity of the bonding wire due to construction tolerances based on
the stochastic electrothermal field-circuit model has been analyzed in [25], shown on
Figure 3. Thus, this kind of input variations have been considered in order to develop
reliable and robust tools for the prediction and simulations of electronic devices. For
instant, a model of a power MOS transistor under consideration has been depicted on
Figure 3.

Figure 2: Cross-sections of a power MOS transistor model treated as a test case 1/2a [45, 62].

2.3 Distinction between Uncertainties in Material and Geometry

From the numerous types of possible model input parameters, we focus on uncertain-
ties in the material properties and the geometry. In general, in a stochastic setting, un-
certain inputs are modeled by means of (infinite-dimensional) random fields and hence,
for computer simulations the task of discretization needs to be accomplished. Several
techniques have been proposed to this end. We refer to the Karhunen-Loève expan-
sion, the generalized Polynomial Chaos technique as well as model specific grid based
or analytic representations. Moreover, as the dimensionality of the discrete represen-
tation is directly related to the computational cost, efficient low-rank representations
are highly desirable and efforts should be devoted to their construction. In this context
controlling the respective (modeling) error in the stochastic solution is of importance.

2.3.1 Materials

Here, the uncertainty can be found in the (nonlinear) material constitutive law. It has
been observed that in several applications this is the most influential source of uncer-
tainty [64]. The stochastic modeling is complicated by the fact that the material relations
and hence the random fields are subject to shape constraints. In particular positivity,
monotonicity and smoothness of nonlinear material curves need to be preserved. It
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(a) Inclined top view (b) Hexahedral mesh

Figure 3: Model of investigated chip (figure from [25]).

has been investigated how this can be achieved by means of the Karhunen-Loève ex-
pansion and flexible spline representations of the constitutive laws [67]. In particular
relations for the input discretization errors and for accomplishing the shape constraints
have been derived.

2.3.2 Geometry

Uncertainties in the geometry may refer to both an interface of two different materials
and the boundary of the computational domain. A major difficulty arises as the equa-
tions are formulated on different domains due to the uncertainty. Also shape perturba-
tions have to be modeled appropriately and re-meshing efforts should be kept minimal.
Here, spline representations are used to model shape deformations. Moreover, in the
context of sensitivity analysis we employ the velocity method [30], a well established
technique from shape optimization. A transformation Ts = xs can be defined by means
of the differential equation

d

ds
xs = V , s ≥ 0, (1)

endowed with suitable initial conditions, where V is referred to as velocity field, see also
Figure 4. The application of Non-Uniform Rational B-Splines (NURBS) to model uncer-
tainties of the geometry was successfully implemented in [29] for Maxwell’s Eigenvalue
problem, uncertain bond wire length have been investigated in [25] and uncertain ge-
ometry in the context of robust optimization in [22, 60, 61, 63]. In [63] also the more
complicated case of uncertain topology was considered.

Figure 1: General model geometry for the eddy current problem.
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Figure 4: Velocity Method: family of transformed interfaces/domains by means of Ts [7].

Once a finite representation of the stochastic inputs is at hand, uncertainties need to be
propagated efficiently through the model. To this end various deterministic techniques,
such as spectral methods [35, 84] and moment based perturbations methods [72], have
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been found to be superior to classical Monte Carlo sampling in several circumstances.
This is true in particular for low-rank input representations and an analytical input-
output dependence of the model. They will be discussed in the following sections.

2.4 Non-intrusive methods for uncertainty quantification

Non-intrusive methods belong to the sampling techniques, which require repetitive run
of the deterministic solver in order to perform the uncertainty quantification. In each
method, however, one of the aims is to compute an approximation of the statistical
moments like the mean and the standard deviation, for example, or, alternatively, to
find a finite set of coefficient functions, when a polynomial chaos expansion has been
used [84].

2.4.1 Monte Carlo method

The Monte Carlo (MC) simulation, see [38], belongs still to the most popular methods
for uncertainty quantification. As a consequence of the Strong Law of Large Numbers,
the concept of this method constitutes in the repeated random sampling in order to
provide numerical results. Given realizations (ξ1, . . . , ξK) of a sample (p1, . . . , pK) of
the random variable p, the mean value is estimated by

mK :=
1

K

K∑
k=1

f(ξk). (2)

Based on the Strong Law of Large Numbers, it holds that mK → E(f(p)) for K →
∞. Therefore the expectation value is approximated by the sample mean (2), i.e.,
mK ≈ E(f(p)) for sufficiently large K. Consequently, the MC or quasi MC techniques,
see [50], can be treated as a special case of sampling methods with weights defined
as ωk = 1

K
for all k. On the one hand, the convergence rate of the MC method is

proportional to 1/
√
K with K denoting the number of sampling points, which might be

considered as a drawback. On the other hand, this convergence rate is independent
of a number of analyzed variables. In our work, it has been implemented only for the
verification purposes.

2.4.2 Quadrature-based stochastic collocation

The quadrature-based stochastic collocation method (SCM), see [21, 53, 84], belongs
also to the sampling methods but it is much more robust than the MC-based technique.
It also relies on repetitive run of the deterministic model, however, for the integral ap-
proximation of the expectation, the appropriate quadrature rules have been applied

E [f(p)] =

∫
Π

f(p)ρ(p) dp ≈
K∑
k=1

wkf(ξk) =: Ê [f(p)]. (3)

Here the quadrature grid points {ξk}Kk=1 and the weights {wk}Kk=1 are related to the
assumed probability density function ρ. Likewise, the higher moments such as the
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variance can be approximated by

Var (f(p)) ≈
K∑
k=1

wk (f(ξk))
2 −

(
Ê [f(p)]

)2

. (4)

However, the effectiveness of this method is strongly affected by the choice of the
quadrature grid points. For instance, the Stroud rules yield a relatively small number of
grid points for a quadrature of a fixed order.

2.4.3 Pseudo-spectral approach

Another approach, which is closely related to the previous method is the pseudo-
spectral technique. Again the basic concept is to provide the solution of the deter-
ministic problem at each quadrature grid point p(k), k = 0, . . . , K. Furthermore, under
assumption that each component pi exhibits a finite second moment, the random field
y can be expanded in the truncated polynomial chaos (PC) series, cf. [84],

y (x, p) =
N∑
i=0

αi (x)Φi (p) (5)

with a priori unknown coefficient functions αi. Here, the basis functions (Φi)i∈N with Φi :
Π → R are orthonormal polynomials, i.e., 〈Φi(p),Φj(p)〉 = δij with the Kronecker delta
denoted by δij. In order to calculate a priori unknown coefficients αi in (5), the output
y is projected into the known polynomial basis (Φi)i∈N by using a multi-dimensional
quadrature rule with corresponding weights wk

αi(x) := 〈y (x, p) , Φi(p)〉 ≈
K∑
k=0

wk y
(
x, p(k)

)
Φi(p

(k)). (6)

Finally, given the PC coefficient αi, we can approximate statistical moments as follows

E [y (x, p)]
.
= α0(x), Var [y (x, p)]

.
=

N∑
i=1

|αi(x)|2. (7)

Summarizing, in the presented sampling methods 2.4.1, 2.4.2 and 2.4.3, the repetitive
run of the existing deterministic solver is required in order to find the propagation of
uncertainty thorough a model under consideration. However, they differ themselves in
the choice of the quadrature grid points and the weights, which has an impact on their
efficiency. In our computations, the Stroud-3/5 formula [76] and the so-called sparse
grid method [75], which suffer less from the curse of the dimensionality [84], have been
used to approximate the statistical moments such the mean and variance values.

2.4.4 Worst-case scenario

Some industrial partners of the nanoCOPS project already used the worst case corner
analysis (WCCA) for the quantification of uncertainties. For the WCCA, one has for
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each single parameter p three predetermined values (lower value, nominal value, upper
value). It follows that 3q combinations exist n the case of q varying parameters. Thus
the computational work is the same as in a tensor product quadrature formula with
three points per dimension. By an optimization procedure, one calculates only for
those parameter values that lower or minimize some performance function. The result
represents a biased look on the parameter space.

In contrast, the quadrature in (generalized) PC is always symmetric. For worst case
analyses, we may require biased schemes for the numerical computation of integrals.
The technique looks similar to importance sampling, in which now one-point or two-
point quadrature (using the points out of the three-point quadrature) are weighted
against the three-point quadrature.

2.5 Implementation of the UQ workflow with a black-box model

The flowchart of the implemented the stochastic collocation - based algorithm for the
UQ propagation using MAGWEL software as a black-box is shown on Figure 48. It is
comprised of two main parts, like the UQ engine1 and the MAGWEL solver (devEM
or ptm-ET). In the Python-C++ interface, the communication between the UQ engine
and the MAGWEL solver is established by files. The UQ engine involve three main
sub-routines: (a) in the UQ settings the input random parameters are described by
the assumed distribution, e.g., Gauss or Uniform type by means of the mean and the
standard deviation are specified, (b) at the UQ Preparation/Simulation stage, first the
quadrature points and the weights are generated and next the solution of the deter-
ministic problem using the MAGWEL solver is computed at each quadrature grid point,
(c) in the post-processing stage, the statistical moments like the mean value and the
variance are calculated. Additionally, graphs of the probability density function and the
cumulative distribution function of the quantity of interest can be generated. The effi-
ciency of this algorithm can be improved by using a parallel technique, where the task
related to deterministic calculation at grid points can be just sent to different cores or
processors [36]. The above approach is non-intrusive, i.e., the UQ set up is make as a
loop around the MAGWEL solver.

Within the nanoCOPS project a beta version of a graphical user interface (UQ GUI) was
designed, implemented and added to MAGWELs software suite. It allows to quantify
the impact of any design random parameter, described by assumed distributions on
quantities of interest such as, e.g., S-parameters, drain/source currents and voltages,
temperature of probe, heat flux, etc. The interface is based on the Dakota library of
Sandia National Labs. Figures 5 – 8 give an overview of the GUI interface.

1The first experiments did exploit the UQ Toolkit, http://www.sandia.gov/UQToolkit/. Currently we consider
Dakota, http://dakota.sandia.gov/. Both, UQ Toolkit and Dakota, are developed at Sandia National Laborato-
ries.
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Figure 5: GUI panel for defining the inputs [7].

Figure 6: GUI panel for setting the inputs [7].
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Figure 7: GUI panel for selecting the methods [7].

Figure 8: GUI panel showing the results [7].
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3 EM-device-circuit co-simulation with random parameters

Now multiphysics problems are investigated, which represent coupled systems with
subsystems modeling different effects. This topic corresponds to Task T2.2.

3.1 Connection to test cases and WP2 deliverables

Link to test cases :

• Test case 1/2a A realistic size power MOS at constant temperature / in ET cou-
pling mode

• Test case 2b A driver chip with multiple heat-sources

• Test case 4a An 8-shaped inductor

• Test case 4b ACCO inductor

• Test case 5 A fast and reliable model for bondwire heating

• Test case 7 Reliable RFIC Isolation

• Test case 12 Transformer (academic benchmark for weakly and strongly coupled
field/circuit problems)

Link to WP2 deliverables :

• D2.4 Intermediate Report on Methods (a) and algorithms (b) for co-simulation
of coupled problems including random parameters without Polynomial Chaos or
reduced-order models

• D2.7 Algorithms implemented in software packages for all Tasks 2.1-2.6.

3.2 Mathematical Modeling of Stochastic Coupled Systems

The stochastic modeling for multiphysics problems is outlined now.

3.2.1 Coupled multiphysics problems in nanoelectronics

The coupling of various physical phenomena in nanoelectronics plays an important
role in the reliability assessment of the circuit and electronic systems, for example,
high-performance applications such as CPUs and RF-circuits or applications related
to automotive industry. In both cases various types of coupled effects exist, for exam-
ple, including a electro-thermal coupling, which is of a great importance in operational
cycles. On the one hand, a generated substantial amount of heat affects the voltage
and current distribution. On the other hand, it also has an impact on the sources of the
heat itself. Also the electro-thermal-stress coupling is investigated in the modeling of
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a power-MOS device, both in DC and in the transient regime, while taking the environ-
mental aspects such as metal stack and package into account. As a consequence, de-
signs in nanoelectronics often lead to large-size simulation problems and include strong
feedback couplings, whose modeling results in so-called Partial-Differential-Algebraic
Equations (PDAEs). In order to solve these coupled PDAE models numerically, vari-
ous methods have been investigated in the nanoCOPS project including a monolithic
approach and a co-simulation framework, see [46, 55, 69]. The complexity of the
problems related to the modeling methodology, based on the various mathematical
approaches, is schematically shown on Figure 9.

Figure 9: Schematic of a coupled problem (consisting of two sub-problems), including uncer-
tainties. In nanoCOPS, those problems are efficiently solved in time domain and probability
space with exploitation of their multirate (different time steps) and multiscale behavior (different
discretizations) (figure from [47]).

.

3.2.2 Stochastic coupled problems description

For simplicity a time-dependent coupled problem has been described by two opera-
tors F1 and F2. In the following, they can represent the ordinary differential equations
(ODEs), the differential algebraic equations (DAEs) or the partial differential equations
(PDEs) after a semidiscretization in space as follows

F1(y1(t, p), y2(t, p), t, p) = 0, (8a)
F2(y2(t, p), y1(t, p), t, p) = 0. (8b)

Here some parameters are defined as p ∈ Π ⊆ RQ. Furthermore, we assume the time
derivatives are included in each part of systems (8) and the operators Fi, for i = 1, 2,
consist of ni equations with given initial values for all p ∈ Π. Then, the solution of the
system (8) is expressed by yi : [t0, tend] × Π → Rni with the coupling variables being
a subset of yi, for each i = 1, 2. Surely, the random steady state counterpart of the
system (8) reads as

F1(y1(p), y2(p), p) = 0, (9a)
F2(y2(p), y1(p), p) = 0, (9b)
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For the uncertainty quantification, some parameters, which exhibit a certain level of
uncertainty in the model described by (8) or (9), are replaced by independent random
variables

p : Ω→ Π, p(ω) = (p1 (ω), . . . , pQ(ω)), (10)

defined on some probability space (Ω,A, P ) with a joint density ρ : Π → R. That is,
we have Q stochastic parameters with independent probability distributions such as
Gaussian, uniform, or beta, for example. As a result, the solution of (9) or (8) becomes
a (time-dependent) random process. Thus, the statistical information like the expected
value and the variance for a function f : Π→ R can be obtained by using (2), (3), (4), (7)
(for transient analysis in a component-wise way) provided that the integrals E [f(p)] and
E
[
(f(p))2] over the parameter space are finite.

3.3 Results for the UQ propagation and stochastic optimization of chosen cou-
pled problems

We present numerical results of the relevant test examples now.

3.3.1 Results for the UQ propagation in a steady state bond wire model (Test case 5)

Due to the continuous shrinking of elements, power densities increase and therefore
thermal considerations in an early design stage are of major importance. This indicates
the need for coupled electrothermal simulations. Additionally, small feature sizes lead
to significant fabrication tolerances that need to be tackled by Uncertainty Quantifica-
tion (UQ).

When designing bonding wires for the packaging of Integrated Circuits (ICs), the de-
signer is left with the choice of its material and its thickness. There is a tradeoff be-
tween minimal cost and maximum performance. Moreover, the thinner the wire, the
higher the probability of failure during operation. On the other hand, the length of
a wire is predetermined by the geometry of the given package. While the material
is commonly chosen according to economic aspects and its physical properties, the
leftover design parameter is the wire’s thickness. Bonding wire calculators allow to es-
timate appropriate parameters by simulation. Many electrothermal models have been
proposed for dedicated bonding wire simulation. In particular, there are phenomenolog-
ical models determined from measurement data and models derived analytically or by
discretization from the electrothermal problem and combinations of those approaches,
see e.g. [52, 51, 70, 31] and the references therein.

To incorporate all physical effects, field simulation of integrated and discrete semicon-
ductor power devices is well established. It is typically based on volumetric space
discretization using for example the Finite Element Method (FEM) or the Finite Integra-
tion Technique (FIT) [82, 83]. However, the treatment of dynamic electrothermal effects
is still challenging due to the coupling [14] and in particular because of multirate and
multiscale effects [28, 68]. Resolving small features as thin wires is such a multiscale
problem and therefore, many commercial simulators include various surrogate models
to avoid discretizing the bonding wire in the computational grid, e.g. [51].
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Following [25], we discuss a framework for embedding lumped electrothermal bonding
wire models into electrothermal field simulators. A nonlinear electric and thermal net-
work based model is proposed and consistently coupled to the spatial discretization. As
an application example, the global sensitivity of the bonding wires’ temperatures w.r.t.
their geometric parameters is investigated. This is necessary because manufactur-
ing tolerances, measurement inaccuracies and model imperfections lead to deviations
between simulation and reality.

We first introduce the coupling between electromagnetics and heat in the continuous
setting. Then, the used discretization approach is introduced. After the presence and
treatment of uncertainties in the bonding wires are explained, simulation results are
discussed and conclusions are drawn.

On the one hand, if an electrical current is applied to a bonding wire, the temperature
of the wire increases due to the Joule heating effect. On the other hand, a change
in temperature of the wire leads to a change of the material parameters. Neglect-
ing the temperature dependence of the volumetric heat capacity, the nonlinearity of
electrical and thermal conductivities in temperature remains. After the introduction of
the electrical and thermal sub-problems, this two-directional electrothermal coupling is
described.

The distribution of electrical quantities can be described by the current continuity equa-
tion. Neglecting capacitive effects, only the stationary current problem

−∇ · σ(T )∇ϕ = 0

with suitable boundary conditions is considered. Here, σ is the electrical conductivity,
ϕ the electrical potential and T = T (t) the time dependent temperature. The spatial
dependencies are suppressed to keep the notation short. A generalization to electro-
quasistatics is straightforward.

Thermal heat is distributed due to conduction, convection and radiation. In the general
form, the transient heat equation describes conduction and is given by

ρcṪ −∇ · λ(T )∇T = Q(T, ϕ),

where ρc is the volumetric heat capacity and λ the thermal conductivity. The power
density Q represents heat sources that affect the system. We assume three different
sources to contribute to this heat source

Q(T, ϕ) = Qel(T, ϕ) +Qbnd(T ) +Qbw(T, ϕ).

First, heat can be generated by the Joule heating term Qel resulting from the electri-
cal contribution. Secondly, heat exchange with the environment is described by the
boundary term Qbnd. Thirdly, the considered bonding wire acts as an external heat
source Qbw since it is not resolved by the grid. These quantities will be explained in the
following. The heat exchange with the environment is modeled as Dirichlet, adiabatic,
convective or radiative conditions.

The boundary term Qbnd = Qconv +Qrad contains a contribution of convective and radia-
tive effects given by

Qconv = − 1

|V |

∫
∂V

~qconv · d ~A, Qrad = − 1

|V |

∫
∂V

~qrad · d ~A.
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In these equations, ~qconv and ~qrad are the heat fluxes that leave a volume V due to
convection or radiation as given by

~qconv = h [Tbnd(t)− T∞]~n, ~qrad = εσSB
[
T 4

bnd(t)− T 4
∞
]
~n,

respectively. Here, ~n is the outward-pointing normal, h the heat transfer coefficient, ε
the emissivity and σSB the Stefan-Boltzmann constant. As boundary effects are dom-
inated by the boundary nodes and the environment, Tbnd is the temperature at the
boundary and T∞ the ambient temperature.

By combining the transient heat equation with the stationary current problem, we obtain
the nonlinear electrothermal system

−∇ · σ(T )∇ϕ = 0, (11)

ρcṪ −∇ · λ(T )∇T = Q(T, ϕ) (12)

with suitable boundary and initial conditions. The Joule heating due to the stationary
current problem is described by Qel = (∇ϕ)>σ(T )∇ϕ resulting from the electrothermal
coupling from electrical to thermal side. The two-directional coupling is established by
the temperature dependence of λ and σ.

The coupled electrothermal problem is discretized in space using the FIT [82, 83] on
a staggered 3D hexahedral grid pair. For simplicity of notation, a staircase material
approximation at the primary grid is assumed, i.e., each primary cell is assumed to
consist of a homogeneous material. The discrete unknowns, i.e., the electric potentials
Φ as well as the temperatures T are allocated at the nodes of the primary grid. The
voltages and the temperature drops at the primary edges are found as differences, i.e.,
_e = −GΦ and _

t = −GT where G is the discrete gradient operator consisting of 0, 1
and −1 entries according to the topology of the primary grid. The currents

__

j and the
heat fluxes __q are allocated at the facets of the dual grid. The currents and heat fluxes
accumulating at the dual cells are calculated by S̃

__

j and S̃
__q where S̃ is the discrete

divergence operator containing 0, 1 and −1 entries according to the topology of the
dual grid. The duality of the grids gives rise to the property G = −S̃>.

The currents
__

j = Mσ
_e and the heat fluxes __q = Mλ

_
t are related to the voltages and

temperature drops by the electrical and thermal conductance matrices Mσ and Mλ,
respectively. In the case of a mutually orthogonal grid pair, every primary edge crosses
a unique dual facet perpendicularly. In that case, the primary edges and dual facets
can be indexed similarly and the material matrices Mσ and Mλ are diagonal with the
entries

Mσ,i,i =
σiÃi
`i

and Mλ,i,i =
λiÃi
`i

where `i is the length of primary edge i and Ãi is the area of dual facet i. The ma-
terial parameters σ and λ are found by a volumetric averaging of the corresponding
parameters of the primary cells touching the considered primary edge.

The thermal capacitance matrixMρ,c relates the heat power to the temperature change,
i.e., QṪ = Mρ,cṪ and operates between the primary nodes and the dual cells. Also
here, a one-to-one relation is present and the indexing scheme is shared. The diagonal
entries of Mρ,c read

Mρc,j,j = ρcjṼj
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where Ṽj is the volume of dual cell j. Here, ρcj is obtained by averaging the volumetric
heat capacity of the primary cells touching the considered dual cell j.

The heat generated by the current is calculated at the dual cells, i.e., the voltages _e are
interpolated to the midpoints of the primary cells yielding ~Ek where k counts over all
primary cells. There, the power density is calculated byQel,k = σk ~Ek · ~Ek. The electrical
contribution to the power then follows from

Qel(T, ϕ) = Ṽjqj

where qj results from averaging the powers from the primary cells to the primary nodes.

The topological operators G and S̃> and the material matrices Mσ, Mλ and Mρ,c are
put together in the discrete counterpart to (11) and (12), i.e.,

−S̃Mσ(T )GΦ = 0, (13)

Mρ,cṪ − S̃Mλ(T )GT = Q(T,Φ). (14)

The degrees of freedom are the discrete temperature vector T = T (t) and the electrical
potential vector Φ = Φ(t), while Q = Qel +Qbnd +Qbw is the discrete representation of
Q. It includes Joule heating by the field model, the boundary term for convective and
radiative effects as well as the self-heating of the bonding wires as explained in the
following. Subsequently, the time is discretized by the implicit Euler method.

For an overview of the involved quantities and their relation, the discrete electrothermal
house based on [27] and [14] is shown in Figure 10. The figure consists of two parts
showing the Maxwell house on the left hand side and the thermal house on the right
hand side. The coupling is established due to the Joule heating term and the nonlinear
electrical conductivity as illustrated.

Figure 10: Discrete electrothermal house (figure from [25]).

To account for the different scales of the bonding wires in comparison to any other
microelectronic components in their vicinity, the wires are not resolved by the grid but
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instead modeled by a lumped element approach. Assuming that conduction is dom-
inant compared to capacitive effects, pairs of mesh points are connected by an elec-
trothermal conductance only. Here, the conductance Gbw serves as a placeholder for
both the electrical and thermal conductance Gel

bw and Gth
bw. This approach is illustrated

in Figure 11.

For the implementation, the conductance matrix

Gbw =

[
Gbw −Gbw
−Gbw Gbw

]
needs to be stamped to the correct positions in the system matrices of (13) and (14). If
this is done for all Nbw bonding wires present in the model, the extended electrothermal
system reads

S̃Mσ(T )S̃>Φ +

Nbw∑
j=1

PjG
el
bw,j(Tbw,j)P

>
j Φ = 0,

Mρ,cṪ + S̃Mλ(T )S̃>T +

Nbw∑
j=1

PjG
th
bw,j(Tbw,j)P

>
j T = Q(T ).

Here, S̃> = −G represents the negative gradient matrix and Pj is a bonding wire
gradient vector consisting of 0, 1 and −1 entries that additionally handles the incidences
between the contacts of the bonding wire j and the grid. The above equation assumes
a linear temperature distribution across each lumped element with its average defined
by

Tbw,j = X>j T, (15)

The vector Xj contains two 1/2 entries and averages the temperature from both bond-
ing wire connection nodes. To account for nonlinear temperature distributions, a single
bonding wire can be modeled by a more complex model or by a number of concate-
nated lumped elements resulting in a piecewise linear temperature distribution.

With these quantities defined, the Joule heating of a single bonding wire reads

Qbw,j = Φ>PjG
el
bw,j(Tbw,j)P

>
j Φ.

Finally, the contribution of all bonding wires to the right hand side of (14) is given by

Qbw =

Nbw∑
j=1

XjQbw,j.

⇔

Gbw(T )

Figure 11: Bonding wire modeling by a lumped element approach (figure from [25]).
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While the methodology has already been presented, an application example is given in
the following. Bonding wires attached to a chip are modeled using the lumped element
approach to realize an electrothermal simulation of the full package. Additionally, UQ
is applied to account for the variations in the bonding wire lengths.

The example features 28 contacts and Nbw = 12 bonding wires as shown in the X-
ray pictures in Figure 12. Each wire connects the chip with one of the contact pads.
Because only the contacts are accessible from the outside, a constant voltage is always
applied over two adjacent bonding wires (e.g. wires 3 and 4 or wires 7 and 8).

The time until the wire fails depends on the applied voltage, the material properties and
the geometry of the wire. Assuming that we know the voltage and the conductivity of
the material accurately, the uncertainty is only related to the wires’ geometry. While the
thickness of the wires can be fabricated very accurately, the only unknown parameter
remains to be the length of the wire. This length is not a priori known as it highly
depends on the bonding process. By using the X-ray pictures in Figure 12(a) and (b),
the lengths have been measured after fabrication.

The correct length of a bonding wire depends on three parameters. First, the minimal
length of a wire is given by the direct distance d between contact pad and chip as
shown in Figure 13(a). Here, it has been assumed that the bonding was done such
that the position of the wire’s end points is exactly as planned by the designer. This
means that the connection point on the contact pad is equally spaced (length a) to
its edges. Secondly, any deviation from the perfect position on the contact pad leads
to an elongation ∆s that adds up to the corrected distance D = d + ∆s as depicted
in Figure 13(b). Thirdly, any additional bending results in an additional elongation ∆h
(see Figure 13(c)) giving the total wire length L = d + ∆s + ∆h. Due to the camera
angle in Figure 12(b), the elongation ∆h could only be determined for 6 wires. For the
other wires, the average value of these 6 measurements has been assumed. In the
example presented here, only possible construction errors according to Figure 13(b)
and Figure 13(c) have been considered to determine the uncertain elongations ∆s and
∆h, respectively.

The measurement of these different length parameters has been done for one chip with
12 bonding wire samples using the X-ray pictures shown in Figure 12. Instead of taking
the total length L of a bonding wire as the uncertain quantity, the relative elongation
δ = L−d

L
is used. The random elongations for all bonding wires, possibly of different

(a) Top view (b) Perspective view

Figure 12: X-ray photos of investigated chip (figure from [25]).

22



a

a a

d

(a) Exact position
on contact pad.
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tion due to
misplacement.

∆h

(c) Elongation due to bending.

Figure 13: Variability of the bonding wire length due to construction tolerances (figure from [25]).

lengths, are determined by the probability density function for δ. From the histogram
shown in Figure 14, we identify a normal distribution with expectation value µBW = 0.17
and standard deviation σBW = 0.048 albeit the rather small number of samples. A more
rigorous analysis would require the fabrication of additional test chips.
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Figure 14: Probability density function for the relative elongation δ (figure from [25]).

Particularly, if the number of random input parameters is high, the Monte Carlo (MC)
method is a well established technique to quantify the variation of outputs [24]. To
this end, MC solves repeatedly the problem, i.e., in our case (13-14), for random sets
of parameters. Naturally, the error committed by taking a finite amount of samples
M is decreasing with increasing number of samples. It serves as a guideline for the
necessary amount of samples and is approximated by

errorMC =
σMC√
M
, (16)

where σMC is the standard deviation approximated with the M samples. The estimator
unveils the rather slow convergence in terms of

√
M . However, the application of other

methods is straightforward.

The chip is modeled following the geometry obtained by measuring the X-ray pictures
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shown in Figure 12. All 28 contact pads have been modeled to be of equal width
wpad = 0.311mm. 24 of them have the same length `pad = 1.01mm, whereas the other
4 have a length Lpad = 1.261mm. As an approximation, all structures are approximated
using rectangular shapes. Copper is chosen as the material for the bonding wires,
the contact pads and the chip while epoxy resin is used for the mold compound. Ad-
ditionally, the outer end of each contact pad is modeled as Perfectly Electric Con-
ducting (PEC). In Figure 3, the model and the computational mesh are shown. The
corresponding materials and their conductivities at T = 300K are collected in Table 3.

As electric boundary conditions, the PEC nodes are connected to a constant potential
of Vdc = ±20mV such that the voltage over each of the 6 pairs of bonding wires equals
Vbw = 40mV. For all other boundaries, current flow is prevented by setting homoge-
neous Neumann conditions. All non-PEC nodes are set to the initial potential Vinit = 0V
at time t = 0 s.

The thermal boundary conditions are as follows. For all boundaries, convection and
radiation conditions with a heat transfer coefficient of h = 25W/m2/K and an emissiv-
ity of σrad = 0.2475 are chosen, respectively. As initial conditions, the whole chip is
assumed to be at the ambient temperature T∞ = 300K.

Since a possible failure of the bonding wires is investigated, we are interested in the
temperature of the wires over time. As the wires themselves are not resolved by the
grid, the representative wire temperatures are extracted from the end-points of the
wires as given by (15). The expectation value Ej(t) for each wire temperature is calcu-
lated by averaging over all M samples, i.e.,

Ej(t) =
1

M

M∑
m=1

T
(m)
bw,j(t).

With the objective in mind that none of the bonding wires should fail, it is sufficient to
pick out the wire that experiences the highest expected temperature Ej(t). Therefore,
we define Emax(t) to be the maximum of the expectation values of all wires, viz.

Emax(t) = max
j

[Ej(t)], for j ∈ {1, ..., Nbw}. (17)

Other stochastic moments, for example the variance or standard deviation, can be
determined analogously.

A Monte Carlo simulation with M = 1000 samples was carried out using the probability
density function from Figure 14. With the simulation parameters as given in Table 4,
the Monte Carlo error calculates to errorMC = 0.147K. In Figure 15, the resulting ex-
pectation value E(t) for the temperature of the hottest wire is plotted over time. Error
bars indicate the output variation resulting from the variability in the input, being the

Table 3: Material Properties @ T = 300K
Region Material λ [W/K/m] σ [S/m]
Compound Epoxy resin 0.87 1× 10−6

Contact pad Copper 398 5.80× 107

Chip Copper 398 5.80× 107

Bonding wire Copper 398 5.80× 107
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Table 4: Simulation Parameters.
Parameter Value
Bonding wire voltage Vbw 40mV
End time 50 s
No. of time steps 51
No. of MC samples 1000
Wires’ diameter 25.4µm
Average wires’ length L 1.55mm
Ambient temperature 300K
Heat transfer coefficient 25W/m2/K
Emissivity 0.2475

length of the wire. Assuming that a bonding wire fails mainly due to the degradation of
the surrounding mold, a critical temperature Tcritical = 523K ≈ 250 ◦C is defined to mark
the threshold for failure. This critical temperature is inserted as a red line to indicate
the upper bound for design validity.

Thanks to convection and radiation at the chip’s boundaries, a stationary situation is
observed after t ≈ 50 s. Then, the mean temperature of the hottest wire is still lower
than the critical temperature Tcritical. However, the uncertainty in the lengths of the
bonding wires leads to variations of the temperature with a standard deviation of σMC =
4.65K. As the failure of bonding wires is a relevant reliability problem, the 6σ-deviation
is visualized by the error bars in the figure. For the given configuration, the variation
may indeed influence whether a bonding wire fails or not. This can be seen as the error
bars cross the critical temperature for t > 26 s. Figure 16 shows the spatial temperature
distribution at t = 50 s. As one would expect, the region where the contacts are closest
and are connected by the shortest wires experience the largest temperature increase.
These wires are the most sensitive in the system. This is confirmed by the fact that one
of these wires is the one with the maximal temperature evolution shown in Figure 15.

To conclude, bonding wires are included as lumped elements in a coupled electrother-
mal field model. By this, the behavior of the bonding wires can be checked already in
the design phase. The thickness and material of the bonding wires can be selected by
evaluating the simulation results.
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Figure 15: Expected temperature at end-point of the hottest bonding wire with plotted 6σMC-
deviation over time. In red, the critical temperature of the wire’s material is indicated (figure
from [25]).
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Figure 16: Spatial temperature distribution at t = 50 s (figure from [25]).

As a possible application, a stochastic model for uncertain bonding wire lengths has
been set up for an exemplary chip package. This uncertainty is included in the coupled
electrothermal field model and affects the final operating temperature of the bonding
wires. It is quantified in terms of expectation value and standard deviation. Concerning
the investigated uncertainty of the bonding wires’ lengths, it is important to recall that
the used data set to extract the probability density function is very small. However, the
simulation result of the presented example indicates that the relative influence of the
uncertainties can be significant for the validity of bonding wire design.

3.3.2 Results for the robust topology optimization of a steady state Power Transistor
model (Test case 1)

We dealt with the topology optimization of a power transistor device when taking ge-
ometrical and material uncertainties into account. On one hand we could use the
advanced technologically ptm-ET (MAGWEL) solver for the simulation of the compli-
cated structure of a power MOS device in order to predict behavior of the device in
critical conditions. On the other hand, our methodology allowed for the solution of a
real engineering problem such as an anomalous failure mechanism due to the ther-
mal runway. Specifically, we reduced the thermal instability by optimizing the geometry
within the device layout, while taking both the conductive power losses and shape vari-
ations of source/drain into account. Thus, in [63] and [62] we mainly focused on a
shape/topology optimization problem of a power MOS device with three metal layers
under geometrical and material uncertainties to reduce the current density overshoot.
This problem, occurring in the automotive industry, yields a stochastic electro-thermal
coupled problem. It is a multi-finger MOSFET power transistor with a stripe cell struc-
ture, which consist of several thousands of parallel channel devices.

The source and drain contacts are located on the top metal finger of the design, as
shown in Figure 17. A series of metal stripes and complex via patterns transport the
current to drain and away from the sources of the individual channels. Consequently,
the multi-dimensional current flow is governed by a coupled time-dependent system of
stochastic Partial Differential Equations (PDEs). Its solution enables to investigate the
propagation of uncertainties through a 3-D model, which affect yield and performance
of a power transistor. In particular, p(ω) = [σ3(ω),W2(ω), Cυ(ω), VD(ω), VS(ω)] are taken
as parameters, in which the conductivity of the Metal3 layer, σ3, the thickness of the
Metal2, W2, and the thermal capacitance of the Via12, Cυ, and the drain and source
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Figure 17: Power Transistor Model (figure from [46, 62]).

contacts are considered, see also Figure 18. Here ω varies over some probability space
and the probability distributions of the parameters are predetermined. The PDEs are
equipped with random Dirichlet boundary conditions that describe the potentials at the
drain and source pads.
To reduce the current density overshoots in the area of the contact layer of the power
device, as basic random-dependent cost functional

F (υ) = w1

∫
D

Qe [υ, V (υ)] dx+ w2

∫
Γ

h [V (υ)] dγ, (18)

was taken, where the dissipation power Qe is analyzed in the area of Metal3 layer
D ⊂ R3, and the source voltage term h is represented by the random Dirichlet boundary
condition in the area of the source and drain pads Γ ⊂ R2. The variable υ is defined as
υ = (x, p (ω)), whereas the weights w1 and w2 refer to known a priori information about
objectives.
For the robust optimization one minimizes a PDE-constrained minimization problem

min
υ

E [F (υ)] + η
√

Var [F (υ)], (19)

where η = 3 was taken. The Stochastic Collocation Method, based on Polynomial
Chaos Expansion (PCE) [84], provided a response surface model to estimate the ex-
pectation E [Fυ(υ)] and the standard variation

√
Var [Fυ(υ)]. Combining with a Topo-

logical Derivative Method, we could reduce hot spot phenomena in a robust sense, see
Figure 19 and 20.

Additionally, we present also the course of the total conductance, the course of the
total power and the course of the total current during the optimization in Figure 21, in
Figure 23 and in Figure 22, respectively.

3.3.3 Results of the UQ analysis for a transient nonlinear field/circuit coupled problem
(Test case 12)

We solved a stochastic field/circuit problem, shown in a Figure 24 using a monolithic
approach. The stochastic eddy-current field problem, defined in a spatial domain D ∈
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(a) initial configuration (b) optimized configuration

Figure 18: Shapes of the metal3 layer as well as the drain and source pads (red color) for: the
initial configuration (a), the optimized model in the 18th iteration (b) (figures from [62]).

(a) initial configuration (b) optimized configuration

Figure 19: The current density for the initial model (CD) in the contact layer - hot spots, rep-
resented, by 8 red dots in the enlarged blue box (a) and the CD in the contact layer after
optimization (b) (figures from [62]).

R2 and a time domain [t0, tend], is governed by the random quasi-linear equation

σ∂ta+∇×
(

(ν(|∇ × a|) κ(x, ω)) ∇× a
)

= χj , (20)

where ω ∈ Ω denotes the random inputs of the model, a := a(x, t, ω) is the magnetic
vector potential (with homogeneous Dirichlet conditions), σ and ν are conductivity and
reluctivity, respectively. Additionally, the function κ(x, ω) has been introduced in order
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(a) initial configuration (b) optimized configuration

Figure 20: The heat flux density (HFD) in the metal3 layer for initial model (a) and the HFD in
the optimized topology (b) [62].
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(b) standard deviations

Figure 21: The total conductance as a function of the iteration steps: mean value (a) and
standard deviation (b) [62].

to model the local degradation of material (reluctivity). It has been parameterized by a
truncated Karhunen-Loève Expansion (KLE) [73] with N terms, i.e.,

κ(x, ω) ≈ κ(x) +
N∑
i=1

κ̂i(x)Zi(ω), (21)

where κ(x) denotes the mean of the random field, the functions κ̂i(x) are determined
by the eigenvalues and eigenfunctions of the assumed covariance function, e.g., the
exponential covariance function, and Zi(ω) are uncorrelated [84]. In eq. (20), the
winding functions χ = [χ1, . . . , χl, . . . , χL]> are functions of space that distribute the
lumped currents j = [j1, . . . , jl, . . . , jL]> in the 2D domain [15, 71]. To establish the
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(b) standard deviations

Figure 22: The total current as a function of the iteration steps: mean value (a) and standard
deviation (b) [62].
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(b) standard deviations

Figure 23: The total power as a function of the iteration steps: mean value (a) and standard
deviation (b) [62].

(a) 2D transformer FEMM

R0
v(t)
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0
6

PDE model

RM,2RM,1

LM

(b) rectifier circuit with embeded FEMM model

C

Figure 24: Nonlinear Field/Circuit configuration [15, 71] using FEMM [49] as prototype field
simulator.

circuit coupling we calculate

∂t

∫
D

χla dx+Rljl = vl l = 1, . . . , L, (22)
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where Rljl is some voltage loss. Each conductor has its own conductance and Rl is
given by

∫
D

1
σl
χl · χldx, see [71, Eq. (17)]. The vl in (22) are the couplings to the circuit

system of stochastic differential-algebraic equations [37]

AC
d
dt
qC(A>Cu, t) + ARgR(A>Ru, t) + ALiL

+AMj + AViV + AIis(t) = 0,
d
dt

ΦL(iL, t)− A>L u = 0,

A>Vu− vs(t) = 0,

with additional incidence matrices A∗ such that vl = A>l u, or v = (v1, ..., vL)> = A>u,
for suitable Al or A) and constitutive laws for (nonlinear) conductances, inductances
and capacitances (random functions with subscripts R, L and C, determined by, e.g.,
the statistical moments), independent sources is and vs, unknowns are the potentials
u := u(t, ω) and currents iL := iL(t, ω) and iV := iV(t, ω).
To perform the UQ analysis, the nominal parameters of all the four diodes as well as
the resistance and the capacitance of the low pass filter have been replaced by

ĨS(p1) := IS(1 + 0.05p1), Ṽth(p2) := Vth(1 + 0.05p2),

R̃(p2) := R(1 + 0.1p3), C̃(p4) := C(1 + 0.1p4)

with independent, uniformly distributed, random variables pj ∈ [−1, 1], for j = 1, . . ., 4.
Hence, a relatively high uncertainty of 10% or 5% is considered for each parameter.
The same procedure has been conducted for other stochastic parameters (with the
variance of 10% for each component) related to the first seven components of the
KLE that capture 95% of the random field energy. For the purpose of modeling of
the transformer core, we consider a random field of reluctivity with one mean and an
exponential two-point covariance function

C(x, y) = δ2exp(−‖x− y‖2/L), (23)

with δ = 0.1 and L=10 being the correlation length. This resulted in 22 deterministic
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Figure 25: Output/input relation in a bridge rectifier with an RC filter [4].

transient simulations of a rectifier circuit model. In each simulation, the degradation of
an iron core of the transformer has been taken into account using a KLE dimension-
reduction technique. Figure 26 presents the approximation of the mean and standard
deviation obtained by the numerical simulation using the non-intrusive method (SCM).
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Figure 26: Expected value (a) and standard deviation (b) of the solution of the bridge rectifier
with random parameters [4].

The result of the variance-based sensitivity analysis, see [58, 57, 77], is depicted on
Figure 27. It shows that the output voltage is more or less equally sensitive to all
considered parameters.
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Figure 27: The variance based sensitivities calculated for the resistance, capacitor and diodes
parameters and of the KLE components [4].

3.3.4 Results of the UQ transient analysis for the Power Transistor model (Test case 2a)

The implementation at MAGWEL deals with the electro-thermal coupling problem in
an ab-initio self-consistent manner [45, 12]. In this case, electrical and thermal equa-
tions are solved simultaneously and self-consistently from a single set of equations.
Accurate modeling of metal layers as required for advanced integrated BCD (Bipolar-
CMOS-DMOS) technologies has been obtained by the application of a high spatial
resolution. At the same time, the simulator uses a well-adopted mesh for the substrate,
which is important for the simulation of the temperature. Consequently, both the voltage
drop in the on-chip metallization and the device temperature can be determined with-
out sacrificing accuracy. Joule self-heating and heat flow in metal is modeled together
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with non-linear temperature-dependent electrical and thermal resistivity and thermal
capacitances of materials [11, 45]. The electrical part of the integrated field solver [45]
addresses the current-continuity equation and Ohm’s law

∇ · J = 0, J = σ(T )E, (24)

where J and E denote the current density and the electrical field, respectively, and σ is
the temperature-dependent electrical conductivity. The thermal part of the solver refers
to the heat equation which is controlled by Joule’s law

∂tU = −∇ ·Q+Qe, Q = −λ∇T, U = Cv(T − T ∗), (25)

where the local heat generation is defined by Qe = J · E. Furthermore, Cv is the
constant-volume heat capacitance of the material, T refers to the reference or ambient
temperature, λ represents the thermal conductivity. The Neumann (adiabatic) bound-
ary condition is imposed on the side walls of the simulation domain. The solution
of (25), assuming the heat source is known, provides the needed information about
the temperature to (24). The source may comprise several contributors such as the
boundaries of the domain with heat-injecting or extracting properties or the Joule self-
heating component Qe. To perform the uncertainty quantification, some parameters p̃
in the model defined by the coupled system (24) and (25) have been substituted by
independent random variables ~p = (ε(ω),Wk(ω), σk(ω), Cv(ω))) defined on some prob-
ability space. Consequently, the model for a semiconductor device [78, 74] stated on
a bounded domain D ⊂ Rd is governed by the coupled stochastic partial differential
equations (PDEs) 

∇ · (ε∇V ) = ρ,

∇ · ~J(p) + q∂tp+ qR(p, n) = 0,

∇ · ~J(n) − q∂tn− qR(p, n) = 0,
~J(n,p) = q (n, p) µ(n,p) · ∇V ± qD(n,p)∇(n, p),
Cv∂tT = ∇ · λ(T )∇T + σ(T )‖∇V ‖2,

(26)

equipped with suitable boundary conditions, where ρ, ε and q denote the charge den-
sity, the permittivity and the elementary charge, respectively. In this model, generation-
recombination processes are involved by the recombination rate R, for example, the
Shockley-Read-Hall term.The electrical field ~E := E(x, t, ω) is determined by the elec-
tric scalar potential V := V (x, t, ω). Furthermore, n and p, represent the concentration
of holes and electrons, while Dn, Dp, µn, µp, Jn := Jn(x, t, ω), Jp := Jp(x, t, ω) are
the diffusion, mobility and currents densities of electrons and holes, respectively. The
symbol (n, p) describes in compact way equations for electrons and holes. In this case,
also temperature is defined as T = T (x, t, ω). For the kth conductive layer of the model,
the σ is represented by σ = Wkσk, where Wk denotes the size of the layer, for example,
the thickness.

The problem with uncertainty quantification of both material and geometrical parame-
ters comes from the automotive industry, where there is a need to handle the demand-
ing electro-thermal operational constraints to design both components and systems.
First, a similar structure to the one proposed in Use Case I: Power-MOS - electro-
thermal-stress coupling, shown in Figure 28(b), has been considered as a case study.
The geometrical finger structure of a device design has been shown in Figure 28(a).
For uncertainty quantification, the coupled problem defined by stochastic PDEs (26) is

33



(a) Part of the finger structure in a typi-
cal device of a power transistor.

(b) Case I: The geometry of the power transistor.

Figure 28: The layout of the power transistor (figures from [47, 61]).

solved by the deterministic MAGWEL solver [45] at every quadrature grid point using a
type of the stochastic collocation method. In the case of the uncertainty of geometry,
the thickness variation has been modeled by Gaussian distribution. The nominal and
mean value as well as the standard deviations caused by uncertain geometry have
been shown on Figure 29. A similar analysis has been performed when conductivity is
treated as uncertain parameter. The UQ propagation in the part of the power device
caused by conductivity variation is presented in Figure 30.

Figure 29: UQ analysis for the thickness of the Metal3 layer modeled by a Gaussian distribution
with 10% variation around a nominal value 1µm [61].
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Figure 30: UQ analysis for σk (of the Metal3 layer) modeled by a uniform distribution with 15%
variation around a nominal value 2e7 S/m [61].
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4 Parameterized MOR for uncertainty quantification

This section focuses on using parametric MOR (PMOR) to accelerate non-intrusive
uncertainty quantification (UQ), which corresponds to Task T2.3. In non-intrusive UQ,
a parametric system needs usually to be solved at many different parameter samples,
which is computationally expensive when the parametric system is of large dimension,
e.g., a dynamical system resulting from discretization of partial differential equations.
Parametric MOR [18], which builds a reduced order parametric system of a much lower
dimension for the relevant computations at all parameter samples, is a powerful method
to reduce the high computational cost.

(P)MOR has been proved to be efficient in many application areas such as optimiza-
tion [22] and UQ [20, 85, 56, 19, 21]. Various (P)MOR methods have been pro-
posed within the nanoCOPS project such as balanced truncation [54], multi-moment-
matching methods, and reduced basis methods [19, 20, 21]. Another type of MOR,
where insignificant input random variables are detected by a sensitivity analysis and
reset back to constants, is presented in [58]. Some intermediate results have been
reported in deliverable D2.2 [2].

The focus of this section is PMOR-based UQ for the power-MOS device, for which the
multi-moment-matching method is shown to be highly accurate, robust and efficient.

4.1 Mathematical modeling of the Power-MOS device

Figure 31: Heat flux density of the power-MOS device on the back contact at t = 10−6 s (figure
from [46]).

The model of interest in this section is a Power-MOS device shown in Figure 28(a) [85].
The device has three contacts: the drain, the source, and the back contact. Here we
study the system behavior within the time interval t ∈ [0 s, 10−6 s], where 10−6 s is the
rise time of the source voltage. The main interest of our analysis is to study how an
electrical excitation influences the electrical and thermal field. As is shown in Figure 31,
the circuit is heated up because the electrical excitation results in Joule self-heating:

QSH = ~E · ~J.
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The dynamics of the Power-MOS device is described by the electrical and the thermal
sub-systems. The electrical sub-system can be described by

∇ · J +
∂ρ

∂t
= 0,

J = σ · E, E = −∇U,
ρ = −∇ · (ε∇U),

where J is the current density, E is the electrical field, U is the electrical potential, σ is
the electrical conductivity, ε is the permittivity, and ρ is the charge density. In this sec-
tion, we ignore both the local charging, i.e., ε = 0 and ρ = 0, and the dependence of the
electrical conductivity σ on temperature, i.e., the electrical sub-system is independent
of the thermal sub-system, and obtain the following simplified governing differential
equation, which is time-independent:

∇ · (σ · ∇U) = 0.

The thermal sub-system is governed by similar equations:

∇ · φq +
∂w(T )

∂t
= Q,

φq = −κ∇T,
w(T ) = CT (T − Tref),

where φq is the heat flux, w is the local energy storage, CT is the thermal capacitance,
and Q represents heat sources or sinks. For the thermal sub-system, we also ignore
the dependence of the thermal capacitance on the temperature.

The inputs of the system include the voltages (V ) and temperatures (T ) of the three
contacts, namely:

Vdrain(t) = Vback(t) = 0 (V), Vsource(t) = 107t (V), (t ∈ [0 s, 10−6 s])

Tdrain(t) = Tsource(t) = Tback(t) = 300 (K).

The outputs we consider here include the currents (I) and thermal fluxes (φ) of the
three contacts. The electro-thermal model of the power-MOS device that we consider
in this section is

AE(p)xE(p, t) = −BE(p)u(t), (Electrical Part),
ET(p)ẋT(p, t) = AT(p)xT(p, t) +BT(p)u(t)

+ F (p)×2 xE(p)×3 xE(p), (Thermal Part),
xT(p, 0) = x0

T, xE(p, 0) = x0
E, (Initial Conditions),

y(p, t) = CE(p)xE(p, t) + CT(p)xT(p, t) +D(p)u, (Output).

(27a)

(27b)
(27c)
(27d)

For the whole system, p represents parameter(s), u(t) ∈ Rl is the input vector and
y(p) ∈ Rm is the output vector. In the electrical part (27a) governed by algebraic equa-
tions, AE(p) ∈ RnE×nE is the system matrix, BE(p) ∈ RnE×l is the input matrix and
xE ∈ RnE is the state vector. In the thermal part (27b) governed by ordinary differ-
ential equations, BT(p) ∈ RnT×l is the input matrix, xT(p) ∈ RnT is the state vector,
AT(p), ET(p) ∈ RnT×nT are system matrices. The tensor F (p) ∈ RnT×nE×nE, which can
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be considered as nT slices of nE by nE matrices Fi(p) ∈ RnE×nE, i = 1, . . . , nT , rep-
resents the nonlinear coupling from the electrical part to the thermal part. Denoting
the j-mode tensor-matrix product by ×j, the product F (p) ×2 xE(p) ×3 xE(p) is a vec-
tor of length nT, whose i-th component is the standard vector-matrix-vector product
xE(p)>Fi(p)xE(p). In the output part (27d), D ∈ Rm×l represents the feedthrough, and
CE(p) ∈ Rm×nE and CT(p) ∈ Rm×nT represent the output matrices corresponding to the
electrical part and the thermal part, respectively. In this formulation, some weak factors
are ignored, e.g., the Joule self heating related to the input variables and the depen-
dence of the electrical and thermal conductivity on the temperature. First, Joule self-
heating should theoretically be modeled by two tensor products: F (p)×2 xE(p)×3 xE(p)
and G(p)×2xE(p)×3u(t). The G part describes the nonlinear coupling corresponding to
the boundary and the inner field, while the F part describes the coupling correspond-
ing only to the inner field. Since the influence of the G part is rather limited, only the
F part is considered in our formulation. In addition, besides the Joule self-heating, the
temperature change also results in coupling since both the electrical and the thermal
conductivity varies with temperature. This effect is also ignored as it is dominated by
Joule self heating. Due to the two simplifications above, system (27b) has a one-way
coupling from the electrical part to the thermal part through the tensor F (p), and the
coupling the other way round is ignored. Instead of a single coupled system, we write
out the electrical and the thermal sub-systems explicitly not only to show the one-way
coupling, but also emphasize the fact that applying pMOR to the electrical part and
the thermal part separately is much more efficient than applying pMOR to the single
coupled system, which we observed in our numerical tests.

In our numerical tests, p represents a single parameter σ, the conductivity of the third
metal layer. Therefore, all parametric matrices in system (27) take the form

Y (p) = Yc + pYv, Y ∈ {AE, AT, BE, BT, CE, CT, D,ET, F}, (28)

because the finite-integration technique (FIT) assembles fluxes that are proportional to
the conductivity of each mesh cell material.

4.2 PMOR based on multi-moment-matching

The multi-moment-matching methods are arguably the most computationally efficient
for many applications, especially for linear systems of the form

E(p)dx(t,p)
dt

= A(p)x(t, p) +B(p)u(t),
y(t, p) = C(p)x(t, p) +D(p)u(t),

(29)

where only E(p), A(p) ∈ Rn×n, B(p) ∈ Rn×lI, C(p) ∈ RlO×n, and D(p) ∈ RlO×lI. The
multi-moment-matching PMOR method computes a basis matrix V based on the se-
ries expansion of the state vector x in the frequency domain. Under the zero initial
condition, the frequency domain description for system (29) is

(sE(p)− A(p))x(s, p) = B(p)u(s),
y(s, p) = C(p)x(s, p) +D(p)u(s),

(30)

where we assume that the matrix pencil (A(p), E(p)) is regular for any p value, i.e.,
there exists λp,0 such that λp,0E(p) − A(p) is nonsingular. In this section, we assume
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that A(p), B(p), C(p), D(p) and E(p) all take the affine form

M(p) = p1M1 + . . .+ pmMm. (31)

Given expansion points p0 = [p0
1, . . . , p

0
m], and s0, x(s, p) in (30) can be expanded as

x(s, p) = [I − (σ1G1 + . . .+ σmGm + σm+1Gm+1 + . . .+ σ2mG2m)]−1BMu(s)

=
∞∑
i=0

(σ1G1 + . . .+ σ2mG2m)iBMu(s), (32)

where σi = spi − s0p
0
i , σm+i = pi − p0

i , Gi = −[s0E(p0)− A(p0)]−1Ei, Gm+i = [s0E(p0)−
A(p0)]−1Ai, i = 1, 2, . . . ,m, and BM = [s0E(p0)−A(p0)]−1B(p), under the condition that
all matrices in [·]−1 are nonsingular and

‖σ1G1 + . . .+ σ2mG2m‖ < 1. (33)

Because of condition (33), the resulting ROM is normally accurate only around the
expansion point p0. To obtain a parametric ROM valid on a wider range, multiple ex-
pansion points are often employed as we will show below.

Defining
Rj = [G1, . . . , Gp]Rj−1, j = 1, . . . , q,

and
R0 = [s0E(p0)− A(p0)]−1[B1, . . . , Bm],

where B1, . . . Bm are derived from (31), we can compute the matrix Vs0,p0,q, whose
columns form an orthonormal basis of the subspace spanned by the first q of Ri’s [33]:

range{Vs0,p0,q} = span{R0, R1, . . . , Rq}s0,p0 . (34)

Using V := Vs0,p0,q, which is assumed to be an n × k matrix, we obtain the parametric
reduced-order model via Galerkin projection,(

V >E(p)V
) dxr(t,p)

dt
=

(
V >A(p)V

)
xr(t, p) +

(
V >B(p)

)
u(t),

yr(t, p) = (C(p)V )xr(t, p) +D(p)u(t),
(35)

where the state vector xr(t, p) is of order k. When A(p), B(p), C(p) and E(p) all take
the affine form (31), the reduced parametric matrices can be computed by the formulae

V >E(p)V = p1V
>E1V + . . .+ pmV

>EmV,

V >A(p)V = p1V
>A1V + . . .+ pmV

>AmV,

V >B(p) = p1V
>B1 + . . .+ pmV

>Bm,

C(p)V = p1C1V + . . .+ pmCmV,

where all constant matrices on the right-hand side can be pre-computed.

Note that the number of columns in Rj increases exponentially with j. When the num-
ber of the parameters in p is larger than 2, or when there are many inputs, multiple
expansion points should be used to keep the size of the reduced-order model reason-
able. The idea is straightforward. Given a set of expansion points (si, p

i), (i = 0, . . . , j),
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where the superscript i for p indicates the i-th expansion point rather than a power, a
matrix Vsi,pi can be computed for each pair (si, p

i) as

range{Vsi,pi,qr} = span{R0, R1, . . . , Rqr}si,pi . (36)

The final projection matrix V is obtained from the orthogonalization of all matrices
Vsi,pi,qr ,

V = orth{Vs0,p0,qr , . . . , Vsj ,pj ,qr}. (37)
For similar accuracy, the number qr in (36) can usually be taken much smaller than q
in (34) and normally, only a few well-chosen expansion points suffice. For example, 1
or 2 commonly suffices for qr, while q must be taken a much larger value depending
on the problem. The reason is that, using multiple expansion points, the difficulty of
the parametric dependence can be tackled by adding new interpolation points, each of
which adds only a few columns due to the small qr, which is much more economical
than using a single expansion point, where this difficulty must be treated with the in-
crease of q, each step of which becomes increasingly more expensive. Consequently,
the reduced-order model is normally smaller and more accurate on a broader parame-
ter range when multiple expansion points are used.

The choice of the numbers and locations of the expansion points (si, p
i) has an impor-

tant influence on the efficiency of multi-moment-matching PMOR methods. Actually,
good accuracy and compactness of the reduced-order model can only be achieved
when the expansion points are selected judiciously.

In the next section, we introduce a technique for adaptively selecting the expansion
points according to an a posteriori error bound ∆(s, p) for the ROM. By using the error
bound to access the reliability of the reduced-order model, we develop an automatic
procedure for constructing the ROM.

4.3 Adaptively selecting the expansion points

For the general system (29) with lI inputs and lO outputs, the error bound ∆(s, p) is
defined as

∆(s, p) = max
1≤i≤lI,
1≤j≤lO

∆ij(s, p),

where ∆ij(s, p) is the error bound for the (i, j)-th entry of the transfer function matrix of
the ROM, i.e.,

|Hij(s, p)− Ĥij(s, p)| ≤ ∆ij(s, p),

where H(s, p) and Ĥ(s, p) represent the transfer functions of the full-order model and
the reduced-order model, respectively. In this section, we define the ∆ij(s, p) as in [32,
33], which is inspired by the a posteriori error bounds proposed for the reduced basis
method:

∆ij(s, p) =
||rdui (s, p)||2||rprj (s, p)||2

β(s, p)
+ |(x̂du)∗rprj (s, p)|,

where

rprj (s, p) = B(:, j)− [sE − A]x̂prj ,

x̂prj = V (sV >EV − V >AV )−1V >B(:, j),

rdui (s, p) = −C(i, :)> − [s̄E> − A>]x̂dui ,
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s̄ is the conjugate of s, and the state xdui of the dual system is approximated by

x̂dui = −V du(s̄(V du)>E>V du − (V du)>A>V du)−1(V du)>C(i, :)>.

Here, for ease of notation, p is dropped from the matrices E(p), A(p), B(p) and C(p),
and the j-th column of B(p) and the i-th row of C(p) are denoted by B(; , j) and C(i, :),
respectively. The variable β(s, p) is the smallest singular value of the matrix sE(p) −
A(p). The matrix V du can be computed, for example, using (36) and (37), but replacing
R0, . . . , Rqr with Rdu

0 , R
du
1 , . . . , R

du
qr , where the matrices siE(pi) − A(pi) in R0, . . . , Rqr

are substituted by s̄iE
>(pi) − A>(pi), and Ej by E>j , Aj by A>j , B(:, j) by C(j, :)>,

j = 1, . . . ,m. The derivation of ∆(s, p) is detailed in [32].

Algorithm 1 Adaptively selecting expansion points ŝ, p̂, and computing V automatically [32, 33]
1: V = [];V du = [];
2: Choose some εtol < 1 and a small positive integer qr; set ε = 1;
3: Choose Ξtrain: a large set of samples of s and p, taken over the domain of interest;
4: Choose the initial expansion point: (ŝ, p̂);
5: while ε > εtol do
6: range(Vŝ,p̂,qr) = span{R0, R1, . . . , Rqr}ŝ,p̂;
7: range(V du

ŝ,p̂,qr
) = span{Rdu0 , Rdu1 , . . . , Rduqr }ŝ,p̂;

8: V = orth{V, Vŝ,p̂,qr};
9: V du = orth{V du, V du

ŝ,p̂,qr
};

10: (ŝ, p̂) = arg max
s,p∈Ξtrain

∆(s, p);

11: ε = ∆(ŝ, p̂) ;
12: end while.

Thanks to the error bound ∆(s, p) for the ROM, the expansion points (si, p
i) can be

selected adaptively, and the projection matrix V can be computed automatically as
is shown in Algorithm 1. It is worth pointing out that although the error bound is
parameter-dependent, many p-independent terms constituting the error bound need
to be pre-computed only once, which can be repeatedly used in the algorithm for all
samples of p in Ξtrain, e.g., the terms V >M1V, . . . , V

>MmV , etc.

4.4 Parametric MOR of the Power-MOS model

Following the idea of quadratic Krylov-type MOR, we first ignore the nonlinear part
F (p)×2xE(p)×3xE(p) in system (27b) and use the adaptive PMOR algorithm proposed
to reduce the resulting system in the form (29). To approximate the one-way coupling
term, we need to reduce the electrical sub-system before reducing the thermal sub-
system [85].

• The electrical sub-system (27a) is already in the form (30) if we assign E(p) =
0, A(p) = −AE(p), B(p) = −BE(p), s = t, by noting that for the validity of the
proposed PMOR method, system (30) is actually not necessarily a frequency-
domain system. We denote the basis built for the electrical sub-system (27a) by
VE.

• If we ignore the nonlinear coupling term in the thermal sub-system (27b), it is
already in the form (29). To use the methods developed, we first conduct the
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Laplace transform to obtain its frequency domain representation

(AT1 + σAT2 − sET1 − (σs)ET2)X = [BT1 BT2 AT1x
0
T AT2x

0
T]


−U
−σU
−1
s−σ
s

 . (38)

Then, we apply Algorithm 1 to system (38) to obtain the basis for the thermal
sub-system, which we denote by VT.

• To obtain a ROM for (27b), we approximate xE by VEx̂E and xT by VTx̂T, and then
force the approximation error to be orthogonal to the range of VT. The resulting
parametric ROM is

ÊT(p) ˙̂xT(t, p) = ÂT(p)x̂T(t, p) + B̂T(p)u+ F̂ (p)×2 x̂E(p)×3 x̂E(p), (39)

where ÊT(p) = V >T ET(p)VT, ÂT(p) = V >T AT(p)VT, B̂T(p) = V >T BT(p), F̂ (p) =
F (p) ×1 VT ×2 VE ×3 VE, which has rT slices of rE × rE matrices with its j-th slice
nT∑
i=1

VT(i, j)V >E F (i, :, :)(p)VE, where rE and rT are the number of columns of VE and

VT, respectively. To obtain the reduced tensor F̂ (p), we first approximate xE(p) in
the range of VE, and then project the approximation onto the test subspace VT, i.e.,
the tensor product F̂ (p)×2x̂E(p)×3x̂E(p) equals V >T [F (p)×2 (VEx̂E(p))×3 (VEx̂E(p))].
The advantage of the tensor formulation for the ROM is that using the reduced
tensor, evaluating the ROM does not require computations with quantities of the
order of the FOM. In our actual computations, the parametric matrices in the ROM
are computed by

Ŷ (p) = Ŷc + pŶv, Ŷ ∈ {ÂT, B̂T, ĈT, ÊT, F̂}, (40)

where Ŷc and Ŷv are pre-computed during the construction of the ROM. This pre-
computation is also applied to the electrical sub-system (27a) and the output com-
putation (27d).

4.5 PMOR-based UQ

As was reviewed in Section 2, UQ methods can be categorized into non-intrusive meth-
ods and intrusive methods. In this section, we focus on non-intrusive methods since
the pROM of the original deterministic model (FOM) can be directly used to replace the
FOM in UQ. We embed our pROMs into two UQ methods, namely the Latin Hypercube
Sampling (LHS) method and the Stochastic Collocation (SC) method [21].

• LHS. To obtain n samples, LHS divides the input distribution into n intervals of
equal probability, and selects one sample randomly in each interval. The mean
and standard deviation of the samples are used to approximate those of the orig-
inal continuous model. Compared to the standard Monte-Carlo sampling, LHS
ensures a set of evenly distributed samples.
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• SC descried in Section 2.4.2. Since the mean and the standard deviation can
be computed via numerical integration, SC uses a quadrature rule to present the
relevant integrals as a weighted sum of the corresponding function values at the
collocation points. As we conduct UQ on a single normally-distributed random
variable, we use the Gauss-Hermite quadrature rule.

The computationally dominant part of both LHS and SC is the simulation of the high-
order FOM at all sampled points pi. Since our pROMs are highly accurate for these
simulations, pROM-based UQ replaces the FOM (27) with pROMs for these simulations
to achieve a significant speedup.

4.6 Numerical results

In this section, we test the effectiveness and efficiency of pROM-based UQ [85]. All
codes are implemented in MATLAB R©. For the SC method, we use the SGMGA library
to compute the quadrature rule.
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Figure 32: Evolution of the relative errors of the thermal outputs for extreme σ’s at t = 10−6 s
[85].

First, we check the quality of the pROMs in a simulation analysis. For (27), we build
an order-2 pROM for the order-1660 FOM of the electrical part (27a), and an order-30
pROM for the order-11556 FOM of the thermal part (27b). Figure 32 shows that the
relative error for thermal fluxes for the drain. When the system starts, the relative errors
are high because: 1) the thermal fluxes are close to zero since the system is hardly
heated up; 2) the thermal outputs are dominated by modeling error and numerical error
at the starting stage: the outputs of the full-order model also oscillate slightly around
zero even when the temperature is the same everywhere and no voltage excitation is
imposed. However, as time elapses, the relative errors decrease to the order of 10−4

and therefore, the dominant dynamics are accurately captured over a large parameter
range.
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Now we apply the pROMs to UQ analysis of the electro-thermal system (27). Here
we conduct UQ on the outputs at t = 10−6 s. We assume that the conductivity obeys
the normal distribution N (3 × 107, (107)2). The numerical results in Table 5 show that
for both UQ methods, pROM-based UQ computes highly accurate means (E(·)). For
the nontrivial electrical outputs Idrain and Isource, which are sensitive to the change in
the conductivity with the same coefficient of variation (CV) of 33.23%, the standard
deviations (σ(·)) are also computed with high accuracy. The thermal outputs φdrain,
φsource and φback, however, are insensitive to the change in the conductivity with CV’s of
3.77e-07, 4.4138e-07 and 2.3483e-08, respectively. Although the standard deviations
to these insensitive thermal outputs are not of so high accuracy, the relative orders
are correct: actually Table 5 shows that even different FOM-based methods provide
different results with a comparable deviation.

Table 5: UQ results for the outputs at t = 10−6 s [85].
LHS (FOM) LHS (ROM) SC (FOM) SC (ROM)

E(Idrain) 7.4621e-04 7.4621e-04 7.4602e-04 7.4602e-04
σ(Idrain) 2.4794e-04 2.4794e-04 2.4867e-04 2.4867e-04
E(Isource) -7.4621e-04 -7.4621e-04 -7.4602e-04 -7.4602e-04
σ(Isource) 2.4794e-04 2.4794e-04 2.4867e-04 2.4867e-04
E(Iback) 0 0 0 0
σ(Iback) 0 0 0 0
E(φdrain) 5.8479e-04 5.8478e-04 5.8479e-04 5.8479e-04
σ(φdrain) 1.5838e-10 1.5677e-10 1.5985e-10 1.5719e-10
E(φsource) 4.1977e-04 4.1975e-04 4.1977e-04 4.1977e-04
σ(φsource) 1.8528e-10 9.1986e-11 4.6370e-11 9.2124e-11
E(φback) 6.6781e-07 6.6773e-07 6.6781e-07 6.6781e-07
σ(φback) 1.5682e-14 1.7778e-14 1.1199e-14 1.6189e-14
Number of samples 100 100 11 11
CPU time 6001.14 s 94.19 s 733.64 s 30.51 s

In conclusion, the numerical results shows that the proposed PMOR-based UQ frame-
work provides accurate results and significant speedups.
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5 Polynomial Chaos and reduced models in co-simulation

A specific approach, which allows for some adaptivity of discretizations in the random
space, was constructed in the project. This topic corresponds to Task T2.4.

5.1 Motivation of the problem

In nanoelectronics, multiphysics problems appear characterized by the coupling of dif-
ferent effects like electromagnetics, heat transport, mechanical deformation and quan-
tum mechanics, for example. Hence the mathematical model consists of two or more
parts, which are interconnected by a few coupling variables. On the one hand, the cou-
pled system can be solved by a transient analysis of the set of all involved equations,
which is called a holistic simulation or a monolithic time integration. On the other hand,
often a dynamic iteration, see [15, 71, 34], which is sometimes called co-simulation,
is used for a numerical simulation of the coupled system for two reasons. Firstly, the
equations of a part of the coupled system may not be available directly and can be eval-
uated only by calling black-box routines in a software package. Secondly, the dynamic
iteration enables to use different time step sizes in the separate parts of the coupled
system and thus achieves an efficient simulation in the case of multiscale or multirate
behavior.

In this task, we consider multiphysics problems including random variables, where the
solution becomes a random process. Statistics of the random process can be obtained
by a sampling method or a quadrature technique, where the coupled system is solved
for each realization of the random variables. Now the idea is to design a numerical
integration scheme based on a dynamic iteration such that also different discretization
levels can be applied in the random space. More precisely, different grids for the ran-
dom parameters can be employed for the separate parts of the coupled system in the
quadrature schemes.

5.2 Mathematical formulation of the problem

The description of the dynamic iteration method follows deliverable D2.5 [5, Sect. 2].
The algorithm is formulated for time-dependent coupled problems consisting of two
parts, i.e.,

F1

(
y1(t, p), ycpl

2 (t, p), t, p
)

= 0,

F2

(
y2(t, p), ycpl

1 (t, p), t, p
)

= 0,
(41)

where independent random variables p : Ω → Π ⊆ RQ are included from some proba-
bility space (Ω,A, µ) with event space Ω, sigma-algebra A and probability measure µ.
The operators F1, F2 represent systems of ordinary differential equations or differential-
algebraic equations typically stemming from the semi-discretization of partial differen-
tial equations. Hence time derivatives are involved in each part. The operators Fi
comprise ni equations and the solution of the system (41) is yi : [t0, tend]×Π→ R

Ni for
i = 1, 2, where initial values are given for all p. The coupling variables are defined as
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ycpl
i := Biyi with constant matrices Bi ∈ {0, 1}Ri×Ni such that the coupling variables in-

clude just a subset of yi for each i = 1, 2. Typically, it holds that R1 � N1 and R2 � N2,
i.e., the coupling variables represent just a small portion of the solution. Furthermore,
it is allowed that just one of the two subsystems in (41) includes all the parameters.

To solve the coupled problem (41) for a fixed p ∈ Π, we consider a dynamic iteration,
where the total time span is split into windows with a first window [t0, twin]. The resulting
iteration of Gauss-Seidel type reads as

F1

(
y

(ν+1)
1 (t, p), y

cpl (ν)
2 (t, p), t, p

)
= 0,

F2

(
y

(ν+1)
2 (t, p), y

cpl (ν+1)
1 (t, p), t, p

)
= 0,

for ν = 0, 1, 2, . . . (42)

and t ∈ [t0, twin] using the starting values y
(0)
2 (t, p) ≡ y2(t0, p). A numerical method

yields the solutions y1, y2 only on a discrete set of time points, which may also differ for
the two subsystems. We assume that all coupling variables are interchanged at a few
communication time points t̄j with t0 ≤ t̄1 < t̄2 < · · · < t̄J = twin. Interpolation in time
yields approximations of the coupling variables ycpl

i (t, p) for t ∈ [t0, twin] and i = 1, 2.

Statistical information for a function g : Π → R depending on the random parameters
is obtained by probabilistic integrals

E(g) :=

∫
Ω

g(p(ω)) dµ(ω) =

∫
Π

g(p) ρ(p) dp, (43)

provided that the integral is finite, where the existence of a joint probability density
function ρ : Π → R is assumed. For example, probabilistic integration can be applied
to the solution of (41) component-wise. The expected value as well as the variance
represent elementary statistics. Our aim is to compute statistics of the solution y1, y2

for either the complete time interval or just at a final time.

A quadrature scheme or a sampling method yields an approximation of a probabilistic
integral (43), see [84] and the references therein. We obtain a finite sum of the form

E(g)
.
=

K∑
k=1

wkg(p(k)),

with grid points p(1), . . . , p(K) ∈ Π and weights w1, . . . , wK ∈ R. Still a single grid of
parameter values is involved here. For a quantity of interest

g(p) = g̃(y1(tend, p), y2(tend, p)),

at some final time, it follows that an initial value problem of the system (41) has to be
resolved K times for the different realizations of the parameters.

5.3 Adjusted grid technique

Now the above strategy is modified to obtain a potential for adjustments in discretiza-
tions of the random space.
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5.3.1 Definition of the algorithm

We introduce two grids

Gi :=
{
p

(1)
i , . . . , p

(Ki)
i

}
, with p

(k)
i ∈ Π, (44)

for i = 1, 2, dedicated to the two parts of the coupled problem (41). The numbers of grid
points K1, K2 may differ significantly. The subsystem for Fi together with its solution yi
is integrated in time on the grid Gi for each i = 1, 2.

Following (42), we have to solve the problems

F1

(
y

(ν+1)
1 (t, p

(k)
1 ), y

cpl (ν)
2 (t, p

(k)
1 ), t, p

(k)
1

)
= 0 for k = 1, . . . , K1,

F2

(
y

(ν+1)
2 (t, p

(k)
2 ), y

cpl (ν+1)
1 (t, p

(k)
2 ), t, p

(k)
2

)
= 0 for k = 1, . . . , K2,

(45)

in each step of the dynamic iteration. The first iteration step ν = 0 in (45) for F1 can be
computed directly using the globally defined initial values. The outputs are y(1)

1 (t̄j, p
(k)
1 )

for k = 1, . . . , K1 in the communication time points t̄1, . . . , t̄J introduced above. To this
end, we need the coupling variables ycpl(1)

1 (t̄j, p
(k)
2 ) for k = 1, . . . , K2 and j = 1, . . . , J .

Likewise, the outputs of F2 are the solutions y
(1)
2 (t̄j, p

(k)
2 ) for k = 1, . . . , K2 and j =

1, . . . , J . Thus they have to be transformed into the coupling variables y
cpl(1)
2 (t̄j, p

(k)
1 )

for k = 1, . . . , K1, i.e., the evaluation on the other quadrature grid is required. This
strategy repeats in each iteration step. Hence transitions between the two grids have
to be defined for a fixed time point.

For the interchange of information between the two grids, we consider global approxi-
mations of the coupling variables in the parameter space Π. If a global approximation
is available, we can evaluate at any point p ∈ Π. There are two techniques to construct
a global approximation:

1. Best-approximation in integral norm
Orthogonal basis polynomials are available with respect to the L2-inner product
of the probability space induced by the integral (43). Hence a truncated sum of
the polynomial chaos expansion is used, see [84]. Let the time t̄ be fixed. The
global approximation reads as

ỹcpl
i (t̄, p) :=

Mi∑
m=0

ui,m(t̄)Φm(p) (46)

for i = 1, 2 with known basis polynomials Φm : Π→ R satisfying the orthonormality
condition E(ΦmΦn) = δmn. In general, all polynomials up to a certain degree are
involved. The coefficient functions in (46) are determined approximately by

ui,m(t̄) :=

∫
Π

ycpl
i (t̄, p)Φm(p)ρ(p) dp

.
=

Ki∑
k=1

w
(k)
i ycpl

i (t̄, p
(k)
i )Φm(p

(k)
i ) (47)

for i = 1, 2, where the values w(k)
i ∈ R represent the weights of quadrature formu-

las on the grids Gi. Thus the sums (46) can be evaluated for an arbitrary p ∈ Π.
This introduces UQ inside the dynamic iteration of the co-simulation in a time in-
tegration. Although this strategy is intrusive, the evaluations (46),(47) only require
calls to standard procedures in the UQ library.
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2. Interpolation scheme in parameter space
The coupling variables are approximated by an interpolating function. For fixed
time t̄, it holds that

ỹcpl
i (t̄, p) :=

Ki∑
k=1

Ψi,k(p)y
cpl
i (t̄, p

(k)
i ) (48)

for i = 1, 2 with the functions Ψi,k : Π→ R satisfying

Ψi,k(p
(`)
i ) =

{
0 for k 6= `,
1 for k = `,

which are independent of time. For example, Lagrange polynomials are applicable
in the case of uniform grids. Obviously, the approximation coincides with the exact
coupling values at the grid points. Again the formula (48) can be evaluated at an
arbitrary parameter value.

Since the number of coupling variables is relatively low in comparison to the dimension
of the coupled problem, the computational effort for the global approximation is usually
negligible compared to the time integration. After the convergence of the dynamic
iteration in a time window, the same approach is repeated in the next time window.
Therein, initial values can be transformed between the two grids again by the above
procedure. If the approximations have been computed at the final time tend, then we
reconstruct statistical data by quadrature formulas using the same grid points.

5.3.2 Numerical results for thermal-electric problem

In [55], this numerical method was applied to a thermal-electric circuit problem in-
troduced by [16], where the differential algebraic equations of a circuit and the one-
dimensional partial differential equation of the heat transport are coupled. Random
variables are included in both subsystems. Figure 33 and Figure 34 depict the result-
ing statistics (expected value and standard deviation) of the crucial quantities in the
circuit part and the thermal part, respectively. Therein, the space domain is standard-
ized to the unit interval. Deliverable D2.4 [4, Sect. 3.1] also includes these numerical
results.

5.4 Inclusion of Model Order Reduction

The dynamic iteration decouples the multiphysics problems to an extend that also
model order reduction can be applied in some subsystem.

5.4.1 Substitution of subsystem models

If the solutions of the subsystems in the coupled problem (41) behave differently with
respect to the random parameters, then the application of different quadrature formulas
might become advantageous. Firstly, a higher variance within a subsystem often indi-
cates that a higher accuracy of the quadrature is required. Secondly, a ROM can allow
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Figure 33: Expected values (a) and standard deviations (b) of the output current [V] (blue) and
of the dissipated energy [J] (red) in the circuit part of the heat-circuit problem [55].
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Figure 34: Expected values (a) and standard deviations (b) of the temperature [K] in the thermal
part of the heat-circuit problem [55].
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Figure 35: Original setting with full order models (a) and with inclusion of a reduced order
model (b) [5].

for a much finer quadrature grid, since its evaluation requires just a low computational
effort. Figure 35 illustrates the inclusion of an ROM. If sufficiently accurate ROMs are
available for both subsystems, then even the complete system may be sampled on a
fine grid with a low computational effort, which is in the context of parameterized MOR
as discussed in Section 4. Thus the usage of different quadrature grids is mainly rel-
evant only if one of the subsystems cannot be replaced by an ROM and thus its full
order model (FOM) must be used.

5.4.2 Numerical results for field-circuit problem

For the dynamic iteration including a ROM, we investigate the multiphysics field-circuit
problem shown in Figure 24. Random variables are introduced in both parts of the
coupled problem. The electromagnetic part is replaced by an ROM now. Figure 36
illustrates the expected value and the standard deviation of the output voltage com-
puted by the dynamic iteration including the ROM, as well as a reference solution us-
ing the FOM within a monolithic time integration. The associated differences between
the statistics of the output voltages produced by the two numerical approaches are
depicted in Figure 37. More details can be found in deliverable D2.5 [5, Sect. 3].
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(a) expected values (b) standard deviations

Figure 36: Statistics of the output voltage computed by the full order model (FOM) variant and
by the reduced order model (ROM) variant in field-circuit problem [5].

(a) expected values (b) standard deviations

Figure 37: Modulus of the difference between the full order model (FOM) variant and the re-
duced order model (ROM) variant for the statistics of the output voltage in the field-circuit prob-
lem [5].
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6 Small failure probabilities and ageing

This part of the project refers to the concepts of variability and reliability for technical
components. The topic corresponds to Task T2.6.

6.1 Motivation of failure analysis

The determination of failure probabilities and the detection of faults was considered
to address the reliability of electronic devices in view of undesired variations in an
industrial production. Assuming that most of the produced devices exhibit a good or
acceptable functionality, only a small number of devices have to be rejected. Thus
a numerical simulation shall determine small failure probabilities to confirm that an
industrial production is acceptable and efficient. A strong criterion is the six sigma (6σ)
concept, where variations of six standard deviations under the assumption of a normal
distribution for an input parameter still results in acceptable outputs. The associated
failure probability is below 0.00034% and thus tiny.

In a circuit or a device, a source of failures and faults are imperfections in an indus-
trial production. The miniaturization and down-scaling makes a precise manufacturing
more difficult. An example for faults within a production are undesired bridges between
conducting lines, which should be isolated from each other in the regular case. Fig-
ure 38 shows pictures of bridges provided by the industrial partner NXP. If bridges
appear in an electronic circuit, it has to be determined whether the overall performance
is still acceptable or the component fails.

Figure 38: Bridges as imperfections in the manufacturing process (figures from NXP [81]).

6.2 Mathematical formulation

The mathematical formulation of a failure probability is as follows. Let y ∈ Γ ⊆ Rny

be the state variables of a mathematical model like ordinary differential equations or
partial differential equations, for example. The failure of the system is described by a
function

g : Γ→ R with g(y) ≥ 0 for acceptable,
g(y) < 0 for failure. (49)
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Due to (49), the region of failure becomes ΓF = {y ∈ Γ : g(y) < 0}. To quantify
uncertainties, random variables are introduced as inputs to the mathematical model.
Thus the state variables as an output become random variables Y : Ω→ Γ defined on
some probability space (Ω,A, µ) with event space Ω, sigma-algebra A and probability
measure µ. Under the assumption that a probability density function ρ : Γ → R of the
random variables is available, the failure probability reads as

PF =

∫
Ω

χΓF
(Y (ω)) dµ(ω) =

∫
Γ

χΓF
(y)ρ(y) dy. (50)

Therein, the characteristic function is defined by

χA(y) :=

{
1 for y ∈ A,
0 for y /∈ A,

for an arbitrary subset A ⊆ Γ. Each evaluation of the integrand in (50) requires to solve
the model equations.

6.3 Hybrid technique

A straightforward numerical technique for the computation of failure probabilities is the
Monte-Carlo simulation. The approximation of (50) reads as

PF =
1

M

M∑
i=1

χA(yi) (51)

with A = ΓF and a set of samples Sy = {y1, . . . , yM}. For small failure probabilities (50),
a rule of thumb is to simulate until 10 failures appear. Hence the total number of sam-
ples becomes M ≈ 10/PF on average, which causes a huge number of simulations.
Alternatively, surrogate models (also called response surface methods) can be applied,
where a complex model function g is substituted by a cheap approximation g̃. The es-
timate of the failure probability (50) becomes (51) with A = Γ̃F = {y ∈ Γ : g̃(y) < 0}.
However, often the surrogate models produce bad approximations for small failure
probabilities.

Li and Xiu [43] designed an hybrid method, where the concepts of full order model
valuations and surrogate model evaluations are combined. This technique was ap-
plied successfully to academic test examples. An improved variant of this method was
constructed in [44]. The crucial idea of this approach is to partition the domain of
the parameters using a neighborhood of the boundary of the failure region. Figure 39
sketches this strategy. It holds that

χΓγF
= χ{g̃<−γ} + χ{|g̃|<γ}∩{g<0} (52)

with some threshold value γ > 0. The threshold γ is related to the size of the neighbor-
hood. The equality (52) is often fulfilled even for a moderate accuracy of the surrogate
model. The error control is derived given a desired tolerance TOL for the approximation
of the failure probability PF from (50). The threshold γ has to be chosen as

γ = ηTOL−1/p with η = ‖g − g̃‖Lpρ(Ω).

53



Γ

p
2

1
pF

Γ

Figure 39: Two-dimensional parameter domain Γ with failure region ΓF and a neighborhood of
the boundary of ΓF indicated by dashed lines [6, 26].

The hybrid approach was neither known nor used for industrial applications yet. We
implemented the method from [43] and thus made it available to the industrial partners
in the project. Algorithm 2 describes the technique. More details on the implemented
algorithm are given in deliverable D2.6 [6].

Thus the response surface model (or a gPC series expansion) is helpful in detecting
the volume for failures. In this volume, a full simulation is applied. Not that these
full simulations may also require smaller time stepping and more Newton iterations.
Furthermore, the assumption has to be made that libraries (like for circuit devices) still
provide accurate compact models.

Algorithm 2 Iterative Failure Probability Algorithm [6, 26]
1: procedure HYBRID(g, g̃, M, δM, η,Sy)
2: set k = 0,M (k) = 0
3: evaluate P 0

F using (51) with Γ̃F

4: find permutation π of set [1 : M ], such that {|g̃(yπi)|}Mi=1 is ascending
5: while k < dM/δMe do
6: define S(k)

z = π[M1:M2], where M1 = M (k) + 1,M2 = M (k) + δM

7: evaluate g for each element of S(k)
z ;

8: set P (k)
F = P

(k−1)
F + 1/M

∑
yi∈S(k)

z

(
−χ

Γ̃F
(yi) + χΓF

(yi)
)

9: if |P (k)
F − P (k−1)

F | ≤ η then
10: return P kF
11: end if
12: update k = k + 1, M (k) = M (k−1) + δM
13: end while
14: return P kF
15: end procedure
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6.4 Numerical results for an electro-thermal problem

On domain D and time interval I, we are concerned with a nonlinear electrothermal
problem

−∇ · (σ(T )∇ϕ) = 0, in I ×D, (53a)
ρc∂tT −∇ · (λ(T )∇T ) = σ|∇ϕ|2, in I ×D, (53b)

endowed with suitable initial and mixed boundary conditions. Bond wires, see Figure 3
(left), are incorporated in (53) using lumped elements after discretization with FEM

Kα(y, xT ) = KFE
α (xT ) +K lmp

α (y, xT ), α ∈ {λ, σ}.

Therein, KFE
α denotes the standard FE stiffness matrix, K lmp

α includes the lumped bond
wire contribution and y are the bond wire lengths as random parameters. With x =
(xT , xϕ) we obtain a parametric index-1 differential algebraic equation

Mẋ+K(y, x)x = q(y, x).

Now we apply the hybrid technique outlined in Section 6.3. The failure indicator func-
tion (49) reads as

g =

∫
I

f>x dt.

The surrogate model g̃ is constructed by a stochastic collocation approach based on a
tensor product grid or a sparse grid. We solve the adjoint system

−Mż +K(y)z = f

backward in time to obtain the evaluations in the grid points for the surrogate model.
With the stochastic collocation approximation z̃, we obtain

η =

∥∥∥∥∫
I

z̃ · (q(x̃)−M(x̃)′ +K(·, x̃)x̃) dt

∥∥∥∥
Lpρ(Ω)

.

In the numerical computation, we consider two uncertain bond wires. The length of
a wire is li = li,0/(1 − yi) with random variables yi uniformly distributed in the interval
(0.17, 0.048). In the stochastic collocation method, we use a tensor product grid of de-
gree p in the domain of the parameters. The computational effort of the hybrid method
is dominated by the number of evaluations of the full order model. Table 6 shows the
required number of full model evaluations and the resulting thresholds γ for different
degrees p.

6.5 Ageing

The hybrid technique can be extended to simulate ageing as outlined in deliverable
D2.6 [6, Sect. 4]. In addition to uncertainties due to manufacturing imperfections, age-
ing may cause parameter variations. Modeling of ageing is achieved by introducing a
random process Ỹ : Ĩ × Ω → R, where Ĩ ⊂ R contains the time-scale of the ageing
process. We can then seek for an approximation in separated form

Ỹny(τ, ω) =

ny∑
i=1

fi(τ)Yi(ω), (54)
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Table 6: Computational effort in hybrid approach for calculating the failure probability of bond
wire fusion for different degrees p of the collocation grid.

degree p threshold γ no. full evaluations
1 4.31 ×10−2 768
2 4.60 ×10−4 12
3 1.31 ×10−6 0

e.g., by truncating the Karhunen-Loève expansion. In this way we identify again a set of
uncorrelated random variables. If necessary, independence can be achieved by using
an additional Hermite polynomial chaos expansion. Now, also the system’s response
depends on the time τ , i.e., g̃ : Ĩ × Γ → R and one might define the performance
function as

g = min
τ∈Ĩ

g̃(τ, ·). (55)

Provided that (54) and (55) can be computed efficiently, failure probabilities can be
evaluated in the presence of ageing effects using the hybrid method described above.

As an example, consider the threshold voltage of transistors shifted by a negative bias
temperature instability [42]. There, the ageing effect is modeled as

∆Vth(τ, ω) = Z1(ω) log (Z2(ω) + Z3(ω)τ), (56)

where the Zi, i = 1, 2, 3, denote random variables with statistics inferred from mea-
surement data. If the Zi from (56) are independent, we can directly identify Yi = Zi,
i = 1, 2, 3. If the data is correlated, the Karhunen-Loève expansion (54) can be used
instead (note that the log-normal part will ask for some transformation).

6.6 Fast Fault Detection

In the context of failure of technical systems, there is also the field of (fast) fault detec-
tion, which was considered in [79, 80, 81, 23].

A special algorithm for fast fault simulation was developed in NXP’s in-house circuit
simulator Imperfections in manufacturing processes may cause unwanted connections
(faults) that are added to the nominal, golden, design of an electronic circuit. When
considering faults from the point of view of parameter variations this is well in the range
of large deviations. The faulty elements are represented by adding linear conductivities
to the circuit. The approach also works for analyzing the effect of additional linear ca-
pacitors. However, the main interest is in adding linear conductivities: thus p uv>x(t, p),
where p = 1/R, with resistance R, and given vectors u, v, to the system of circuit
equations of which the solution becomes x(t, p). By fault simulation we simulate all
situations: a huge number of new connections of pairs of vectors (u, v) and each with
many different values of p, up to the regime of large deviations, for the newly added
element and comparing the result x(t, p) at specific time points with the ”golden” so-
lution x̃(t) = x(t, 0) of the fault-free circuit, corresponding with p = 0. If the deviation
between x(t, p) and x̃(t) exceeds some threshold, the fault triple (u, v, p), is marked as
detectable and is taken out of the list. We also consider opens (broken connections).
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Figure 40: Test time reduction. The faults were detected by the Fast Fault Simulation algorithm.
The CPU needed for using the traditional loop order was estimated [81].

A strategy was developed to efficiently simulate the faulty solutions until their moment
of detection. The hierarchical structure was enhanced, such that the hierarchical circuit
solver could deal with all new elements: note that some new connections may violate
the original hierarchical structure of the golden circuit. A clever software solution was
developed to cover this case as well. By this, also the faulty problems could benefit
from an enhanced form of hierarchical bypassing. Because each candidate fault is a
low-rank modification of the designed circuit an hierarchical variant of the Sherman-
Morrison formula was exploited. Fast fault simulation is achieved in which the golden
solution and all faulty solutions are calculated over the same time step.

The results are stored in a database. This database is of help to first externally diag-
nose a faulty IC and to identify the candidate circuit submodels where the fault may
have happened. After that the IC can be studied further internally. This can help to
improve next productions. Moreover, the collection of simulations can also be helpful
as a priori check before layouting.

By this implementation, NXP can identify locations on a chip that are probably affected
by tiny manufacturing accuracies, which case faulty behaviour at predefined time points
for measurements. Inclusion of sensitivity analysis brought speeds up in CPU time of
a factor 20 or more. Later invoking of faults gave an additional order of magnitude in
speed up. By this reduction of simulation time candidate faults could be detected that
would have been impossible otherwise because of excessive CPU time.

With this implementation, NXP’s simulator is the best in the world for this functionality
on fault detection. Currently, Cadence is implementing the algorithm into their Spectre
circuit simulator. Based on our experiences with the implementation in NXP’s simulator,
the algorithm can relatively easily be re-implemented in any circuit simulator that can
be interfaced with the MAGWEL solvers.
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6.7 Calibration

In the Progress Report D5.2 [13], a calibration approach was already mentioned to
improve yield by electronic control. Design for high yield either means to make a huge
number of Monte Carlo samples, or to exploit techniques like Importance Sampling. At
NXP the latter was exploited for, e.g., SRAM design [23, 48].

Figure 41: Probability density functions before and after calibration (NXP) [17].

An alternative approach is based on electronic control. Small additional circuitry is
optimized and tuned to assure best performance of the main circuit to end-users. To
determine the best location of this circuitry, techniques from fast fault simulation can
be re-used. The effect of this approach is that the resulting probability density function
looks better centered and that the tails look more narrow than without this approach,
see Figure 41.

This use of electronic control is called (electronic) ’trimming’. It has no relation to sta-
tistical techniques like Winsoring (in which one clips outliers to a boundary percentile),
or Trimming (in which one simply neglects outliers). Here it is an electronic tuning,
especially on outliers, f.i., by tuning a variable resistor. Assume that a circuit has a
DC solution V (R, p), at some measurement point, that depends on a resistor R and
an uncertain parameter p. The circuit design aims to satisfy a performance criterion
VLow ≤ V ≤ VUp. Now for each p we can determine how V depends on R. An opti-
mal R(p) assures that V (R(p), p) = VRef ∈ [VLow, VUp]. R(p) can determined by some
nonlinear solution technique, involving solving the circuit equations several times. Al-
ternatively,t R(p) can also be found by exploiting the expansion series in generalized
polynomial chaos for Uncertainty Quantification using R and p as two parameters, see
(57).

V (R, p) = e>ij

m∑
k=1

akφk(R, p), (57)

∂V (R, p)

∂R
= e>ij

m∑
k=1

ak
∂φk(R, p)

∂R
. (58)

Here e>ij selects the measurement nodes.

The UQ facilities provide fast evaluations of V (R, p) as well as sensitivities with respect
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to R and to p as library functionality in post processing, see (58). This allows that R(p)
can be determined quite efficiently for every realization of p. In practice a table can be
made from which R(p) can easily be determined or approximated.

In [17] we did fit Generalized Gaussian Density (GGD) distribution

f(x) =
β

2αΓ(1/β)
exp

(
−
(
|x− µ|
α

)β)
, (59)

to the ‘trimmed’ data in Figure 41. Here α, β > 0, µ ∈ R and

Γ(z) =

∫ ∞
0

tz−1e−t dt for z > 0,

is the Gamma function. The mean and the variance of the GGD (59) are given by µ
and α2Γ(3/β)/Γ(1/β), respectively. Hence after expressing α = σ

√
Γ(1/β)/Γ(3/β) we

get that, for all β, the variance is σ2. We note that for β = 2 one has Γ(1/2) =
√
π,

Γ(3/2) = 0.5
√
π and then α = σ

√
2; i.e., the GGD becomes the Gaussian distribution.

The parameter β determines the shape. For β = 1 the GGD corresponds to a Laplacian
distribution; for β → +∞ the probability density function in (59) converges to a uniform
distribution in (µ −

√
3σ, µ +

√
3σ), and when β ↓ 0 we get a degenerate distribution

in x = µ (but with a finite variance). For some graphical impression, see Figure 42.
Clearly, we are interested in the cases when β ≥ 2.

The initially fitted (non-symmetrical) empirical density function f̂ is given in Figure 43
(middle). The fitted Generalized Gaussian Density (GGD) distribution is given in Fig-
ure 43 (right). Note that even the tails are very well approximated.

By this a process capability index Cpkg similar to the standard Gaussian case could be
generalized [17]. This helps communication with the production plants.
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Figure 42: Generalized Gaussian density functions with µ = 0 and α = 1 [17].

Figure 43: Calibrated data (left) and the associated empirical probability density function f̂
(middle) and the fitted Generalized Gaussian Density (GGD) distribution (right) [17].
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7 Modeling of uncertainties by probability distributions

A task of the project was the identification of some probability distributions for input
parameters, where specific fields of applications from the industrial partners have to
be considered. This topic corresponds to Task T2.6.

7.1 Motivation of the task

In nanoelectronics, the miniaturization causes imperfections in the manufacturing of cir-
cuits and devices. These variations of an industrial production can often be described
sufficiently accurate by a stochastic model, where specific probability distributions are
assumed for the physical parameters. This task is dedicated to the identification of ap-
propriate probability distributions of the random variables or random processes, which
appear as inputs in the model equations. On the one hand, just a few parameters (like
mean and standard deviation, for example) have to be identified under the assumption
that an input parameter satisfies a common probability distribution like uniform, beta,
normal, etc. On the other hand, irregular probability distributions may underlie the vari-
ations, which requires the fitting of a cumulative distribution function or, equivalently, a
probability density function.
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(b) random samples

Figure 44: Measurements in the NXP example (a) and samples from an approximating normal
distribution (b). x1 and x2 are the currents of an NMOS and of a PMOS, respectively. In both
cases, also a 3σ-ellipse is shown (demonstrating the mean and the covariance matrix) [3].

7.2 Statistical analysis of data sets

The industrial partner NXP provided a data set for tests, where the currents of an
NMOS as well as a PMOS were measured. This test example was also investigated
in [3]. Figure 44 (a) shows the data set consisting of bivariate measurements. The
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form of the data suggested an approximation by a two-dimensional normal distribution.
The parameters of the normal distribution were fitted to the measurement. Figure 44
(b) depicts (pseudo) random samples from the fitted probability distribution to validate
the stochastic modeling. The two sets of samples exhibit a good agreement except for
some outliers in the measurement data for high values of the currents. Yet this test
data represents output quantities of a device and not input parameters of a model.

(a) examples of wafers (b) cells for measurements

Figure 45: Examples of wafers (a), from www.wikipedia.org, and partition in cells for spatial
measurements (b), from ACC [3].

The industrial partners ONN and ACCO made measurements on wafers (semiconduc-
tor material) available. Many different material parameters were measured in cells of
a two-dimensional grid, where an example is shown in Figure 45 (b). This data rep-
resents input parameters for device models. In deliverable D2.3 [3], the properties of
the data sets were investigated by statistical tests. It turned out that the measurements
do not obey traditional probability laws like normal distributions even for moderate sig-
nificance levels. The observed variations of the material parameters are tiny. Conse-
quently, the underlying industrial production still achieves a high precision. Moreover,
the measurements on wafers exhibit a typical sparse structure in space, because just
a few cells from the two-dimensional grid are considered. This sparsity prohibits the
resolution of spatial random effects. Thus the provided data sets do not allow for the
identification of input probability distributions. Other measurement data was not avail-
able from the industrial partners yet. This problem is also mentioned in milestone
MS5 [10, Sect. 3].

7.3 Glue-package-die problem

Alternatively, a test problem was designed, which is relevant for the industrial partner
ONN.
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Figure 46: Model of geometry for a piece of glue connecting a die and a package [8, 59].

7.3.1 Description of the problem

Glue is applied to keep a die and a package together. On the one hand, metallic
parts of devices can be produced with a high precision. On the other hand, the glue
represents a cheap substance, where both the material properties and the resulting
position of the connected layers undergo significant variations. The material properties
as well as the geometry are important for the quantity of the heat transfer between
the layers. The simplified geometry of a piece of glue is illustrated by Figure 46. The
bottom layer is given by a rectangle with fixed lengths a, b. The top layer is not parallel
due to the variations. Now five random variables are considered as input parameters:
thermal conductivity λ and volumetric heat capacity ρc as material parameters, the
average height h0 and the two angles α, β as geometrical parameters.

The output data consists of measurements in L different patches of the piece of glue.
The thermal conductance G and the heat capacitance C for each patch reads as

G` =
λ a` b`
h`

and C` =
ρc h` a` b`

3
(60)

for ` = 1, . . . , L. Therein, a`, b` denote the predetermined lengths of the rectangle for a
single patch and h` is the average height in the patch. It holds that

h` = h0 + tanα x` + tan β y`
.
= h0 + α x` + β y` (61)

with known coordinates x`, y` for ` = 1, . . . , L. The relation (61) is inserted into the
model functions (60).

In our test problem, we predetermine independent uniform distributions with fixed in-
tervals for each input parameter. The model functions (60) allow for the simulation of
measurements by pseudo random numbers, where measurement errors of up to 0.1%
are included. We apply L = 8 patches. Now the aim is to recover the original probability
distributions from the measurements only.

For this purpose, a method of moments was applied, where the moments of the model
functions are compared to the moments of the measurement data. This approach re-
quires the knowledge about the type of the input probability distributions. A nonlinear
least squares problem yields an approximation of the parameters, which determine
the uniform distributions uniquely (two parameters per random variable). However, the
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method of moments yields a moderate success, although large numbers of measure-
ments are involved. In particular, the random parameter ρc was inaccessible by this
technique, because its influence is less than for the other parameters in the model
function.

7.3.2 Fitting of cumulative distribution function

Therefore another approach was implemented, which generates an approximation of
the cumulative distribution for the input parameters. An advantage of this strategy is
that it does not require a priori knowledge about the type of the underlying probability
distributions. Moreover, the approach is able to recover irregular probability distribu-
tions, which have to be expected for variations in an industrial manufacturing. For each
input parameter p ∈ [pmin, pmax], a piecewise linear approximation of the cumulative
distribution function F : [pmin, pmax]→ [0, 1] is constructed by

F̃ (p) :=


0 for p < q1
j−1
m−1
· qj+1−p
qj+1−qj + j

m−1
· p−qj
qj+1−qj for p ∈ [qj, qj+1) and j ∈ {1, . . . ,m− 1}

1 for p ≥ qm

(62)

using discrete points pmin ≤ q1 < q2 < · · · < qm ≤ pmax and some integer m. This
construction guarantees that the function F̃ is increasing monotone. The grid points
q1, . . . , qm represent the unknowns now. Given starting values, an arbitrary number of
samples for p can be generated by the approximation (62), where the inverse function
F̃−1 is applied to uniformly distributed (pseudo) random numbers in [0, 1]. On the one
hand, a sample set of the output quantities (60) is computed by the samples of the
input parameters. On the other hand, the measurement data is available for (60). The
ranges of G` and C` are partitioned into a finite number of intervals. Comparing the
ratio of samples and the ratio of measurements for each interval, a nonlinear least
squares problem occurs for the unknown grid points. Figure 47 illustrates the resulting
approximations for the five input parameters in the case of m = 20. A comparison to
the exact cumulative distribution functions shows a relatively good agreement, since
other numerical techniques like the method of moments yield worse approximations.

At a later stage, the package-die-glue problem shall be simulated in a more realistic
and relevant form. Firstly, the artificially computed measurements have to be replaced
by real measured data. Secondly, the simple model functions (60) are substituted by
parabolic partial differential equations describing the heat transfer.
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Figure 47: Cumulative distribution functions for five random variables: exact input distributions
(red) and piecewise linear approximation (blue) [59].
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8 Implementation

The implementation of algorithms for the tasks of WP2: Uncertainty Quantification
is specified in the report of deliverable D2.7 [7]. Figure 48 illustrates the software
packages included in our uncertainty quantification.

DAKOTA engine

(Material & geometrical
uncertainty)

Non-intrusive methods

Power device

MAGWEL solver

(Full Maxwell & Heat
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Python interface

Python interface
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Figure 48: Software packages for implementations in Uncertainty Quantification [4, 7, 62].

As stated in deliverable D2.7 [7], one may distinguish between three different levels
of implementation. Level one considers the UQ method that led to implementation of
third-party software. The software development inside the nanoCOPS project aims at
realizing bridges between the third party software and the in-house developed software
libraries. The second level of implementation concerns the development of various soft-
ware libraries at different partner’s locations and the integration level of the various in
house package is brought to stage that the full system is operational. ’Operational’
means that the tools can be used and the data communication is in place but some
manual intervention of the user is required to arrive at final results. Finally, the third
level of implementation consists of a fully integrated system of libraries and the data
communication is shielded away from the user. This is the highest level of implementa-
tion since it corresponds to the most user-friendly way of working with the software. It
should be noted that arriving at this stage is also very labor intensive from the software
development point of view and return-of-investment (ROI) of the resources is expected
before it is decided to enter into a level three implementation. Whereas in deliverable
D2.7 [7] we listed the various implementation levels, we will provide the reader here
with some impression what it means if the third level of integration is lacking, e.g. how
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much effort is required to get the desired simulation flow operational?

As a typical example we consider the UQ simulation of the power transistor model that
has served as a key application of the tool developments in the nanoCOPS projects.
The user needs to fight his/her way through the following recipe [61].

1. create a source folder
in this example it is named ”src”

2. outside this folder model file for ptm-et
In this example it is the ptmet input structure file named here ”structure.xml”

3. Also provide the table model
here it is described in the file ”tableModelBPTM130 NMOS.csv”

4. The file ”dakota field mag uq pce 2in 20out 3mix.in” is the main script of dakota
(UQ). We must make sure that paths are set properly.
In the file ”dakota magTimeFunctionMultiOutput.py” it is line 72.

The file ”dakota magTimeFunctionMultiOutput.py” contains the following text [61]:

#!/usr/bin/python

import string

import numpy as npy

import scipy as spy

import csv

import sys

import os

import time

import re

import string

import subprocess

import fileinput

import time

import os.path

import time

def dakota_runAB():

fileIn="../../structure.xml"

inpfile="input.dat"

#solverPath ="/my_path/bin/solvEM"

indata=npy.loadtxt(inpfile)

#print indata

for cur in range(1):

direct = str(cur)
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os.system("rm -rf " + direct)

os.mkdir(direct)

os.system("cp ../tableModelBPTM130_NMOS.csv " + direct)

os.system("cp input.dat " + direct)

os.chdir(direct)

os.system("rm -rf structure.xml")

k = 4

basis = 900.81+1.0+0.5+1.0+1.0

suma=0

for nparam in range(1,len(indata)):

# print indata[nparam]

suma =suma + round(float(repr(indata[nparam])), k)

suma = basis + suma

fileIn="../../structure.xml"

o = open("structure.xml","a") #open for append

for line in open(fileIn):

line = line.replace("placeholder1",str((indata[0])))

line = line.replace("placeholder2",str((indata[1])))

line = line.replace("placeholderB",str((suma)))

o.write(line + "\n")

o.close()

popen = subprocess.Popen([’/my_path/bin/solvEM’,"--mode=ettransient"])

popen.wait()

print "I am waiting a bit:"

time.sleep(1)

os.chdir("..")

def dakota_field_Myparser(**kwargs):

inpfile="input.dat"

indata=npy.loadtxt(inpfile)

file_cvs = ’results_transient.csv’

ll=0

for conductivity in range(1):

direct=str(conductivity)

#print direct

os.chdir(direct)

os.system("ls -lt")

while not os.path.exists(file_cvs):

#print "i am sleeping and waiting"

time.sleep(1)

os.system("ls -lt")
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if ll==0:

tt = "cp " + ’results_transient.csv’ + ’ ../’

os.system(tt)

tt = "cp " + ’times_simulated.txt’ + ’ ../’

os.system(tt)

with open(file_cvs, ’rb’) as csvfile:

spamreader = csv.reader(csvfile, delimiter=’,’, quotechar=’|’)

columns = len(next(spamreader))

if columns!=0:

ut =[]

temp =[]

for it in xrange(columns-1):

ut.append([])

for row in spamreader:

for col in range(0,columns-1):

ut[col].append(float(row[col]))

else:

columns=kwargs[’cl’]+1 #21

rows=kwargs[’ro’] #2

for row in rows:

for col in range(0,columns-1):

ut[col].append(float(0.0))

for col in range(1,columns-1):

temp.append(ut[col])

temp=npy.array(npy.transpose([temp]))

name_file_dat = ’solution_’+str(ll)+’.dat’

ll=ll+1

npy.savetxt(name_file_dat, temp, fmt="%.18e", delimiter=" ", newline="\n")

tt = "cp " + name_file_dat + ’ ../’

os.system(tt)

os.chdir("..")

The content of the file ”dakota field mag uq pce 2in 20out 3mix.in” is

# DAKOTA command: dakota -i dakota_field_mag_uq_pce__2in_20out_3mix.in

# -o dakota_field_mag_uq_pce_2in_20out_3mix.out

# > dakota_field_mag_uq_pce_2in_20out_3mix.stdout

environment

#graphics

tabular_data

tabular_data_file = ’dakota_field_mag_uq_pce_tabular_dataMIX.dat’

results_output

results_output_file = ’dakota_field_mag_uq_pce_resultMIX.dat’

method
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polynomial_chaos

export_expansion_file =’dakota_field_mag_uq_pce_expansion_uq_pceMIX.dat’

cubature_integrand = 3

variance_based_decomp #interaction_order = 1

variables

uniform_uncertain = 2

lower_bounds = 18000000 0.95

upper_bounds = 22000000 1.05

descriptors = ’h1’ ’h2’

interface

analysis_drivers = ’mag_field_bb_pp_20_mix.py’

fork

parameters_file = ’params.in’

results_file = ’results.out’

file_tag

file_save

# aprepro

responses

response_functions = 20

response_descriptors = ’Vd’ ’Id’ ’Td’ ’TFd’ ’Vs’ ’Is’ ’Ts’ ’TFs’ ’Vp’ ’Ip’

’Tp’ ’TFp’ ’Vb’ ’Ib’ ’Tb’ ’TFb’ ’Vg’ ’Ig’ ’Tg’ ’TFg’

field_responses = 20

lengths = 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

num_coordinates_per_field = 11

coordinate_list = 0.0 2e-04 4e-04 6e-04 8e-04 1.0e-03 1.2e-03 1.4e-03

1.6e-03 1.8e-03 2.0e-03

no_gradients

no_hessians

Thus with these prepared files, all that the users needs to do is to identify the proper
locations of the file and program names it the python script, prepare the usual input-
files for the simulator by the appropriate placeholders and run the DAKOTA executable.
However with the UQ-GUI above text-based procedure is replaced by a drop-down
selection menu.
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9 Summary

This deliverable presents the research results on ”Uncertainty Quantification” (UQ)
itemized for the seven tasks of Work Package 2. More details can be found in the
previous deliverables as well as the project’s publications given in the following biblio-
graphy. The aims of the work programme have been achieved. New fields of appli-
cations were made accessible by our modeling and simulations in nanoelectronics.
On the one hand, we developed new numerical methods for problems with parame-
ter variations. On the other hand, approaches, which are already known from recent
academic works, were adjusted to solve UQ problems in nanoelectronics. We applied
all techniques to simulate mathematical models of devices or circuits. Often multi-
physics problems, which include different physical aspects, were considered, because
the miniaturization of components does not allow for neglecting secondary effects any
more. The feasibility of the numerical methods was verified in each task. In addition,
we investigated the efficiency by simulations of test examples. Most of the test exam-
ples either originated from our industrial partners or were designed in cooperation with
these companies. Some numerical methods demonstrate a significant improvement in
comparison to former techniques.
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[71] S. Schöps, H. De Gersem, A. Bartel: A cosimulation framework for multirate time
integration of field/circuit coupled problems. IEEE Trans. Magn. 46 (2010), 3233–
3236.

[72] C. Schwab, R.A. Todor: Sparse finite elements for stochastic elliptic problems –
higher order moments. Computing 71:1 (2003), 43–63.

[73] Ch. Schwab, R.A. Todor: Karhunen-Loève approximation of random fields by gen-
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