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1 Introduction

In industrial applications, a manufacturing process causes variability in produced elec-
tronic circuits of devices [4, 9]. The task, which is considered in this report, is to analyse
real data from measurements. We assume that the measurement errors are below the
true variations, i.e., these errors are not taken into account.
The strategy can be summarized by two steps:

(i) We check if the data approximatively do result from some random process.

(ii) If the answer in step (i) is positive, then we try to find a probability distribution,
which yields a good approximation of the real process.

In particular, spatially distributed measurements are interesting within this context. We
consider problems in two space dimensions. Thus several measurements of some
quantity are obtained on each spatial element like a wafer, for example. Even if the
measured material property is inhomogeneous in space, the spatial profile could be
nearly the same for all cases and thus deterministic. The question is if the differences
around a mean value are relatively large and if they can be modelled by a random dis-
tribution. In case of a positive answer, a model of a random field shall be constructed,
where the key figures (expected values, variances, etc.) are obtained from the real
data. However, in this intermediate report, we focus on the testing if the data obeys
approximately to some probability law, i.e., the step (i) from above.
Three collections of measurements, obtained from different industrial partners in nano-
COPS, are analyzed in this research:

• NXP: bivariate measurements from the currents of an NMOS and of an PMOS
device with a large sample size,

• ACC: spatially distributed measurements on wafers with the detection of several
quantities per space point,

• ONN: spatially distributed measurements on wafers with the detection of several
quantities per space point,

The report is organized as follows. In Section 2, we specify the structuring of mea-
surements for analysis of data as desired for the work in this project. We outline some
statistical tests in Section 3, which are applied for the investigation of our data. The
main part of the report consists of Section 4, where the data sets are analyzed with
repect to underlying probability distributions.
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2 Statistical Data Formats

2.1 Introduction

In the near future, large parameter variations are expected within the manufacturing
process of electric circuits and electric devices, which make the design and functional-
ity of the end products critical, see [7, 16], for example. Thus the mathematical models
have to include the variabilities of the parameters. In the nanoCOPS project, the vari-
ations are modelled by random variables for scalar parameters (e.g., capacitances,
inductances, resistances, etc.), or random fields for spatial effects (e.g., material pa-
rameters, geometries, etc.) to achieve an uncertainty quantification.
The models require the specification of the probability distributions as input. On the
one hand, traditional distributions can be chosen (e.g. Gaussian, uniform, etc.). On
the other hand, this task will be accomplished by fitting the random distributions to
samples, which are obtained by physical measurements of real devices in cooperation
with the industrial partners.
From the measurements, key figures like the expected value, the variance, the skew
and the kurtosis or other statistical information can be calculated, see [2], for example.
Furthermore, correlations of the measurements for different quantities may appear.
The numerical simulation of the stochastic models yields results, which allow for ap-
proximating the key figures and probability distributions of the outputs.
In the following Sections 2.2 and 2.3, the statistical data formats are described for the
two cases of the input data.

2.2 Scalar random parameters

For the scalar quantities, the measurements consist either of a list of scalar numbers
or of a list of vectors including the scalars component-wise, i.e.,

(m1
1, . . . ,m

1
k), (m2

1, . . . ,m
2
k), . . . , (ml

1, . . . ,m
l
k)

where, simultaneously, for k different quantities, l measurements are done. It should be
specified separately which different settings have been chosen to obtain the measure-
ments. For example, (i) each dataset (m1, . . . ,mk) can be associated to different elec-
tric devices from the same manufacturing process, or, (ii) each dataset (m1, . . . ,mk) is
taken from the same device at different time points t1, . . . , tl in the magnitude of weeks
or years to investigate ageing. In case (i), a permutation of the measurements does not
change the statistical properties or key figures. In case (ii), additional specifications of
the setting or coordinates play a role and the ordering of the measurements is intrinsic.

2.3 Spatial random fields

For spatial processes, the correlations shall be analyzed. The one-, two- and three-
dimensional case is feasible. In the following, the three-dimensional case is described,
since the other two settings appear by simply omitting dimensions. Furthermore, just
a scalar quantity is considered in each space point, because the extension to vector-
valued formats is straightforward.
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2.3.1 Structured measurements

In a cuboid, a uniform grid is given, where a measurement is done in each grid point.
Hence the data are written in the form

(xi, yj, zk,mijk) for i = 1, . . . , n1, j = 1, . . . , n2, k = 1, . . . , n3,

where mijk represents the measurement of the quantity at the space point (xi, yj, zk).
Alternatively, the measurements can be arranged in a three-dimensional field of num-
bers and the information of the space points is stored separately.
Often the spatial domain is designed using a uniform grid of points or cells, whereas
only a few measurements are done in the domain. In this case, the above data format
is still feasible, where cells without a measurement just include an empty entry for mijk.
This data format often agrees to the structure required for procedures in graphical
illustration (post-processing).

2.3.2 Unstructured measurements

Now the position of the space points for the measurements are arbitrary. Thus the data
are written as

(xi, yi, zi,mi) for i = 1, . . . , l,

with mi being again the measurement at space point (xi, yi, zi). In this case, an ar-
rangement of the measurements in a three-dimensional field of numbers does not
make sense.

3 Statistical tools description for data analysis

Amongst all available data delivered by our partners we decided to choose one repre-
sentative physical quantity from every measurement category mainly in order to inves-
tigate following items:

• the normality tests of data under consideration;

• the spatial in/dependences of the data;

• the homogeneity/anisotropy of the material.

Answering these questions allows us to take decision how to model the material in our
models and how we can handle uncertainties related to parameter identification in our
model (which kind of distributions should we take into account during simulation, how
this model could be calibrated then, etc.).
For the moment we restrict ourselves to several Goodness-of-Fit tests [1]. These tests
indicate if a certain distribution occurs. Graphical tools, like QQ-plots, normal probabil-
ity plots and kernel density estimators [11] (available in the Matlab Statistical Toolbox)
can also reveal why a certain distribution does not apply.
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3.1 Description of tests under consideration

The Shapiro-Wilk test [14] for the verification of the hypothesis about the normal dis-
tribution and the Levene’s test [6] for the verification of variances homogeneity will be
applied. If both tests return positive answers, the ANOVA (Analysis of Variances) test
[12] is applied. Otherwise, a special ANOVA test, the so-called the Kruskal-Willis test
[3] (which is non-parametric, and distribution-free in assumption), is used. In both
cases, the desired significance level, or α-level, used α = 0.05.

3.2 Shapiro-Wilk test

The Shapiro-Wilk test [14] verifies the null hypothesis H0 versus the alternative H1 to
check whether a sample x1, ..., xn belongs to a normally distributed population. The
construction of the statistical test value W is as follows :

W =

(
n∑

i=1

aix(i)

)2

n∑
i=1

(xi − x̄)2

where : x(i) denotes i-th order statistic, that is the i-th smallest number in the sample,
x̄ is the mean value, while the constraints ai are defined by :

(a1, ..., an) =
m>V −1

(m>V −1V −1m)1/2
, with m = (m1, ...,mn)> ,

in which m1, ..., mn are the mean values of the order statistics of independent and
identically distributed random variables, which are sampled from the standard normal
distribution, while V denotes the covariance matrix of those order statistics (which is
symmetric, hence V > = V ). The null hypothesis is rejected if the statistical test value
W is below a predetermined threshold.

3.3 Homogeneity variance test - the Levene’s test

In statistics, Levene’s test [6] is used to assess the variances equality in the case when
a variable is calculated for two, or more, groups. Some common statistical procedures
like the ANOVA tests (Analysis of Variances), for example, requires that variances, of
the populations from which different samples are drawn, will be equal. Levene’s test
assesses this assumption. More precisely, it checks the null hypothesis that the popu-
lation variances are equal, the so-called homogeneity of variance or homoscedasticity
assumption. If the resulting p-value of Levene’s test is less than some critical value α
(typically α = 0.05), the null hypothesis of equal variances is rejected because there is
a difference between the variances in the population. Thus, the p-value is the proba-
bility of receiving a test statistic result at least as extreme as the one that was actually
observed, under assumption that the null hypothesis is true [6]. As in the case of the
Shapiro-Wilk test (Section 3.2), a statistical test value W is calculated. The null hy-
pothesis is rejected if the statistical test value W is below a predetermined threshold.
The definition of W needs some preparation.
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We assume k groups of samples Yij, where i denotes the group number and j the j-th
sample within group i. Here j ≤ Ni, where Ni is the number of cases in the i-th group.
From these we derive

Zij =


∣∣Yij − Ȳi·∣∣ , when using the mean of the i-th group, Ȳi·∣∣∣Yij − Ỹi·∣∣∣ , when using the median of the i-th group, Ỹi·.

The overall mean value Z·· of all Zij, and the i-th mean Zi· of the Zij for the i-th group,
are defined as follows

Z·· =
1

N

k∑
i=1

Ni∑
j=1

Zij and Zi· =
1

Ni

Ni∑
j=1

Zij.

Now the definition of the statistical test quantity W can be made

W =

(N − k)
k∑

i=1

Ni (Zi· − Z··)2

(k − 1)
k∑

i=1

Ni∑
j=1

(Zij − Zi·)
2

.

As said before, the null hypothesis is rejected if the statistical test value W is below a
predetermined threshold.

3.4 The Analysis Of Variance ANOVA

The one-way analysis of variance, the so-called one-way ANOVA [12], is a method
for comparing means of two or more samples using the F− distribution. Specifically,
the ANOVA verifies the null hypothesis that samples in two or more groups come from
populations with the same mean values versus alternative hypothesis that they are
drawn from populations with different means. For this purpose, two estimates are made
of the population variance which are given below. The results of a one-way ANOVA can
be considered as reliable if the following assumptions are fulfilled:

• the response variable residuals are normally distributed;

• the samples are independent;

• the variances of the populations are equal;

• the responses for a given group are independent and are identically distributed
normal random variables [13].

The system of hypothesis under consideration is as follows :

The null hypothesis: H0 : µ1 = µ2 = ... = µr,

The alternative hypothesis: H1 : µi 6= µj, for some i 6= j.
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Finally, the ANOVA produces an F -statistic, the ratio of the variance calculated among
the means to the variance within the samples :

F =
MSTR

MSE
,

where particular components are defined by:

MSTR =
1

r − 1

r∑
i=1

ni (x̄i − x̂)2 and MSE =
1

r − 1

r∑
i=1

ni∑
j=1

(xij − x̄i)2.

Here, x̄i denotes the arithmetic mean of the i th group, while x̂ refers to the arithmetic
mean of all the observations including all the r trials.
If the group means are drawn from populations with the same mean values, the vari-
ance between the group means should be lower than the variance of the samples
(following the central limit theorem). Otherwise it is concluded, that the samples are
drawn from populations with different mean values.
A non-parametric alternative to this test, like Kruskal-Wallis one-way analysis of vari-
ance (see next Section), ought to be used when data does not meet the above-
mentioned assumptions.

3.5 Kruskal-Wallis test

The Kruskal-Wallis one-way analysis of variance by ranks is a non-parametric equiv-
alent of the one-way analysis of variance (ANOVA), which does not assume a nor-
mal distribution of the residuals. It is called ”distribution-free”. Thus, this technique
is applied for testing whether samples originate from the same distribution. When the
Kruskal-Wallis test leads to significant results, it means that at least one of the samples
follows from a different population then for the others. However, the test does not give
the answer for following questions, like where or how many differences actually occur
[3]. The test statistic is constructed as follows:

T =
12

n (n+ 1)

k∑
i=1

ni

(
R̄i −

n+ 1

2

)2

,

where n
∑k

i=1 ni, with the trial statistics devided into k groups with numbers n1, n2, ...,
nk. The quantity R̄i is defined as:

R̄i =
1

ni

ni∑
j=1

Rij.

Here Rij is the rank (among all observations) of observation j from group i.
The statistic T is the discrepancy of the mean for the sampled ranks from the mean
value from the overall rank, which is of (n+1)/2. The test assumes an identically shaped
and scaled distribution for each group, except for any difference in medians. It also can
be applied for examining groups that have unequal size [3].
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3.6 Mardia test

Given l different measurements of k properties

(mj
1,m

j
2, . . . ,m

j
k) for j = 1, . . . , l,

we will check if the tuples result from a single k-dimensional normal distribution using
Mardia’s test [10]. Therein, the expected value and the covariance matrix are arbitrary,
i.e., the type of the distribution is checked qualitatively. In this statistical method, the
skewness and the kurtosis

SKEWNESS := E

[(
X − µ
σ

)3
]
, KURTOSIS :=

E [(X − µ)4]

σ4
,

which are associated to the third and fourth moment of the random distribution, are
considered. Consequently, the discrete skewness and discrete kurtosis are calculated
and analyzed. Two different criteria are involved in this test, where the result can be
different for skewness and kurtosis. However, if both statistics yield the same result,
then the conclusions are more reliable. We apply the implentation from [15] to perform
this method.
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4 Industrial Data and Results

4.1 NXP Data

The industrial partner NXP provided measurements on the currents of an NMOS and
of an PMOS device for a certain technology:

131219 NXP Data.dat

The data consist of n = 2715 bivariate measurements. Hence the main task is to
analyse the correlations between the two measured properties. Fig. 1 (left) shows
these measurements. x1 and x2 are the currents of an NMOS and of a PMOS, resp.
Also a 3σ ellipse is shown (eq of the mean and the cov matrix). Multivariate normal
distributions are a special class of ”elliptically contoured distributions”.

4.5 5 5.5 6 6.5
1.5

2

2.5

3

3.5

x
1

x
2

(a) Measurements

4.5 5 5.5 6 6.5
1.5

2

2.5

3

3.5

x
1

x
2

(b) Random samples

Figure 1: Measurements in the NXP example (left) and samples from an approximating normal
distribution (right). x1 and x2 are the currents of an NMOS and of a PMOS, resp. In both cases
also a 3σ ellipse is shown (eq of the mean and the cov matrix).

Using the discrete data, the mean µ and the covariance matrix Σ are computed to

µ =

(
5.4488
2.4936

)
, Σ =

(
0.0380 0.0237
0.0237 0.0207

)
.

We define a normal distribution using this mean and covariance matrix to approximate
the underlying process, where this choice is optimal in some sense. Fig. 1 (right)
shows n realisations of this normal distribution, where the samples follow from pseudo
random numbers. Furthermore, the empirical distribution function of the discrete data
as well as the cumulative distribution function of the approximating bivariate normal
distribution are illustrated by Fig. 2. The error of the approximation on the level of the
distribution function is depicted in Fig. 3. We observe a good agreement.
We perform a statistic test to check the null hypothesis that our data results from a
bivariate normal distribution. Mardia’s method [10] is applied to the data. It follows
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(a) empirical distribution fcn. (b) cumulative distribution fcn.

Figure 2: Empirical distribution function of the measurements (left) and the cumulative distribu-
tion function of approximating normal distribution (right).

Figure 3: Difference between the empirical distribution function and the approximating cumula-
tive distribution function. Clearly there is a difference in the tails.

that the p-values for both, skewness (0.2200) and kurtosis (8.9310), are smaller than
α = 0.0001. Thus we reject the null hypothesis for both criteria on a relatively small
significance level.
Conclusions : The measured data do not result from a bivariate normal distribution.
Nevertheless a fitted bivariate normal distribution already provides an acceptable ap-
proximation. To increase the accuracy, alternative methods for approximation of ran-
dom distributions have to be checked.
Note that, in general, currents of NMOS and PMOS devices are themselves functions
of input parameters. Even if these input parameters are subject to variations according
to a normal distribution, it is not guaranteed that the resulting currents show a normal
distribution.
Outlook : An improvement could be obtained by Fleishman’s power method, see [5, 8].
This approach includes the above fitting as a special case. Thus its approximation
must be at least as good as the straightforward bivariate normal distribution, or better.
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4.2 ACCO Data

The industrial SME partner ACCO did provide technological data as well as measure-
ments of the AC12050 ACCO product. Two excel files were used for this:

1. Technological data.xlsx: ACCO used three different technologies. Their physical
and electrical descriptions have been delivered. It includes suppliers data: typical
device parameters and technological/material (backend) description with process
variation: (BT, IPD, SI).

2. Measurements AC12050 201312.xlsx: ACCO did provide PCM (Process Con-
trol Monitor) measurements on different sites of different wafers and lots. PCM
concern backend characteristics, electrical device parameters, resistances, ca-
pacitances The first database given by ACCO concerned SI wafers only, on 2
different lots, for each lot on 12 different wafers and for each wafer on 5 differ-
ent wafer sites. Measurements concern: Backend, Active devices, resistances,
capacitances parameters.

4.2.1 General description and format of ACCO Data

In general, the data delivered by our project partner ACCO are divided into several
measurement categories: backend data, Thick NFET, Thick PFET, PFET, NFET,
JFET, MIM Capacitance, Resistor, Diffusion resistances. Each category, besides
JFET, includes measurement data performed for 24 pieces of wafers in five mea-
surement points, described in a 2D Cartesian coordinate system. In the case of
JFET, the measurement was carried out in five different points, specified in the
same way as previous data, but for 48 wafers. Moreover, within each category
one can find the rough data description with physical quantities under considera-
tion, for example, its units, target name, measurements, code, specification high
and low range, etc. For the statistical analysis, the commercial software Statistica
version 10.0 MR1 has been used [17].

4.2.2 Results of the statistical analysis

In this section, only one representative data from the measurement category of
the ACCO data are taken into account.

• Backend: E2 resistivity
• Thick NFET: IDsat

• Thick PFET: VtLinear
• PFET: Vtsat
• MIM Capacitance: HIK MIM Density

Furthermore, in order to consider our focus points in checking: (i) the normality
distribution of data under consideration, (ii) the spatial in/dependences of these
data, (iii) the homogeneity/anisotropy of the underlying material, the ANOVA/the
Kruskal-Wallis tests are used. The main results are presented in the form of ta-
bles. More precisely, we will follow the procedure that is described above. Thus,

12



first the assumption on the normal distribution of data will be verified using the
Shapiro-Wilk test. If the obtained answer is positive, then the homogeneity vari-
ance test is applied. Next, depending on the results, the ANOVA or the Kruskal-
Wallis test will be used for finding the answers for the questions : (i)-(iii).

• Measurements AC12050 201312/ Backend/ E2 resistivity

13



Remarks : A test for variance is not required due to the result of the Shapiro-
Wilk test for the normal distribution verification. Thus, the nonparametric
Kruskal-Wallis test is used because of the fact, that the test on the normality
for the investigated quantities failed. In this case, the green color denotes
a significant difference between particular groups, which means that the null
hypothesis is rejected and, in consequence, it is concluded, that the data
tested are not from a normally distributed population.

Conclusions : (i) the analyzed material considering the E2 resistivity is not
homogeneous and it might be anisotropic because the means calculated for
the particular groups are statistically significant (the green color), (ii) the an-
alyzed data for every measurement point (five groups) are spatially indepen-
dent, which comes directly from the first conclusion, (iii) in consequence, the
measurement data do not belong to the same population and cannot be de-
scribed by the same normal distribution. The median distribution, together
with quartiles Q1 and Q3, is presented on Fig. 4.

Figure 4: The median distribution together with quartiles Q1 and Q3.
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• Measurements AC12050 201312/ Thick NFET/ Thick NFET Id sat

Remarks : Here, a test for variance is required due to the result of the test for
the normal distribution. However, the null hypothesis in the Levene’s test has
been rejected. Hence, the nonparametric Kruskal-Wallis test has been used.
Also in this case, the green color denotes that the null hypothesis is rejected.
Conclusions : (i) the analyzed material considering Thick NFET Id sat is
not homogeneous because the means calculated for the particular groups
are statistically significant (the green color), (ii) the analyzed data for every
measurement point (five groups) are spatialy independent, which results di-
rectly from the first conclusion, (iii) in consequence, the measurement data
do not belong to the same population and cannot be described by the same
normal distribution. The median distribution, together with quartiles Q1 and

15



Figure 5: The median distribution together with quartiles Q1 and Q3.

Q3, is shown on Fig. 5.

• Measurements AC12050 201312/ Thick PFET/ Thick PFET Vt linear
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Figure 6: The median distribution together with quartiles Q1 and Q3.

Remarks : The test for variance is not required because of the result of the
test for the normal distribution, thus the nonparametric Kruskal-Wallis test is
used. In this case, the green color denotes a significant difference between
particular groups, which implies that the data tested are not from a normally
distributed population.
Conclusions : (i) the analyzed material for Thick PFET Vt linear is not homo-
geneous because the means calculated for particular groups are statistically
significant (the green color), (ii) the analyzed data for every measurement
point (five groups) are spatially independent, which results directly from the
first conclusion, (iii) as a result, the measurement data do not belong to the
same population. The median distribution, together with quartiles Q1 and Q3,
is shown in Fig. 6.
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• Measurements AC12050 201312/ PFET/ PFET Vt sat

Remarks : A test for the variance is not required due to the result of the
Shapiro-Wilk test, and in cosequence, also in this case, the nonparametric
Kruskal-Wallis test is applied. The green color denotes a significant differ-
ence between particular groups.
Conclusions : (i) the analyzed material for PFET Vt sat is not homogeneous
and might be anisotropic, which resulted in the Kruskal-Wallis test (the means
calculated for particular groups are statistically significant - the green color),
(ii) the analyzed data for every measurement point (five groups) are spatially
independent, (iii) in consequence, the measurement data do not belong to
the same population and cannot be described by the same normal distribu-
tion. The median distribution, together with quartiles Q1 and Q3, is shown in
Fig. 7.
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Figure 7: The median distribution together with quartiles Q1 and Q3.

• Measurements AC12050 201312/ MIM Capacitance/ HiK MIM Densityt
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Figure 8: The median distribution together with quartiles Q1 and Q3.

Remarks : A test for variance is not required because of the result of the test
for the normal distribution, hence, the nonparametric Kruskal-Wallis test is
used. Also in this situation, the green color denotes a significant difference
between particular groups.

Conclusions : (i) the analyzed material for HiK MIM Density is not homoge-
neous due to the fact, that the means calculated for particular groups are
statistically significant (the green color), (ii) the analyzed data for every mea-
surement point (five groups) are spatially independent, this conclusion results
from the first statement, (iii) as a result, the measurement data does not be-
long to the same population. The median distribution, together with quartiles
Q1 and Q3, is shown in Fig. 8.

4.2.3 General conclusions

In a next series ACCO will measure all sites of wafers (not just 5 wafer sites). Mea-
surements are planned by ACCO in September 2014 (fab out of test structures). ACCO
could measure systematically for the entire nanoCOPS project duration all PCM struc-
tures of all wafers after manufacturing.
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4.3 ON Semi Data

4.3.1 General description and format of ON Semi Data

ON Semiconductor did provide a full wafer map of measured data of multiple param-
eters on a FET device, on multiple (2) wafers.The data obtained from ON Semi are
organized similarly as data supplied by our project partner ACCO. However, in this
situation, the numbers of measurements, which implies also the amount of groups,
is much bigger and is 80 for every from seven wafers. The physical quantities under
consideration are described rather roughly. Therefore, we decided to choose only two
electrical variables, which are encrypted as follows : BV@7A [V] and TaV@7A [S]. Also
in this case, the commercial software Statistica, version 10.0 MR1, has been used for
the statistical analysis [17].

4.3.2 Results of the statistical analysis

For the data under consideration, BV@7A [V] and TaV@7A [S], the similar statistical
analysis has been performed as in the case of the ACCO data. Hence, firstly the
assumption on the normal distribution of data is verified using the Shapiro-Wilk test.
Based on the result of this test, the homogeneity variance test is applied, if the every
group pupulation can be described by the normal distribution. In case of both positive
answers, the ANOVA test can be used. Otherwise, the non-parametric Kruskal-Wallis
test is applied in order to find the answers for the question formulated in : (i)-(iii).

• WaferMapData Dev1/ BV@7A
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In this situation, the Kruskal-Wallis test can be applied due to the fact, that at least
one group cannot be described by the normal distribution, for example, group
4. It is not possible to show the result of the Kruskal-Wallis test analysis in this
case, since eighty groups are taken into account (eighty measurement points).
Therefore, only the conclusion is made: the null hypothesis is rejected, because
p = 0.0000 < α = 0.005. The median distribution, together with quartiles Q1 and
Q3, is shown in Fig. 9.

Figure 9: The median distribution together with quartiles Q1 and Q3.

Conclusions : (i) the analyzed material considering BV@7A is not homogeneous
and it might be anisotropic because the means calculated for particular groups
are statistically significant (the green color), (ii) the analyzed data for every mea-
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surement point (eighty groups) are spatially independent, (iii) as a result, the mea-
surement data does not belong to the same population.

• WaferMapData Dev1/ TaV@7A

In this case, the Kruskal-Wallis test can be directly used because the group no
29 does not belong to the normal distribution. As in the previous case we do not
show the result of the Kruskal-Wallis test analysis for eighty groups. Therefore,
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only the conclusion is given: the null hypothesis is rejected, due to the fact, that p
= 0.00632 < α = 0.005.

Figure 10: The median distribution together with quartiles Q1 and Q3.

Conclusions : (i) the analyzed material taking into account TaV@7A [µS] is not
homogeneous and and it might be anisotropic because the means calculated for
particular groups are statistically significant (the green color), (ii) the analyzed
data for every measurement point (eighty groups) are spatially independent, (iii)
as a result, the measurement data does not belong to the same population. The
median distribution, together with quartiles Q1 and Q3, is shown in Fig. 10.

Acknowledge : We would like to thank our colleagues from the West Pomeranian
University of Technology in Szczecin, Poland, for the possibility to perform the statistical
data analysis using Statistica software1.

5 Conclusions

In general, the conclusions, which come directly from the data analysis are as follows:

• To our opinion, the delivered data could be better described, especially for our pur-
pose, including also the needed information about the quality of measurements
process, materials under considerations, etc.

• Specifically, in the case of data analysis of the NXP data, without knowledge about
the precision/quality of conducted measurement, it is very hard to decide on the
null hypothesis for the bivariate normal distribution, based only on the test statis-
tics, because we do not know anything about the measurement errors. We will
discuss this more closely with NXP and with BUT for Task T3.3 (Measurements).

• Similarly, for the analyzed ACCO data, the typical α = 0.05 value was used for the
verification purpose, but we have assumed that the measurement error should

1http://www.statsoft.com/Products/STATISTICA/Product-Index.
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be lower in the averaged sense. However, for the worst scenario (measurement
precision), perhaps also a lower α value should be taken in account.
In section 4.2.3 we already mentioned that ACCO will next measure all sites of
wafers (not just 5 wafer sites). Measurements are planned by ACCO in Septem-
ber 2014 (fab out of test structures). ACCO could measure systematically for the
entire nanoCOPS project duration all PCM structures of all wafers after manufac-
turing.

• As far as the ONSEMI data are concerned, again the information on the measure-
ment process and quantities under consideration should be included.

• Both the ACCO data and the ONN data did not have the spatial structure, which
we tried to analyse. It is questionable if detailed spatial data with the random
structures, which we had in mind, is available at some of our industrial partners.
Firstly, the industrial partners seem to have just a few datasets available due to
confidentiality reasons. Secondly, the industrial production could still be highly
accurate such that no random variations are visible

• We are planning to use the more advanced statistical techniques such as the
so-called systematic graphical methods, in particular QQ-plots / normal probabil-
ity plots and kernel density estimators in order to indicate why something is not
distributed according to a certain distribution but for this purpose the quality of
delivered data should be higher.

• For the further work in WP2, the modelling of uncertainties should be continued
using traditional random distributions (Gaussian, uniform, beta, Gaussian random
fields, etc.). We always can get statistical data just for a small subset of problems
from our industrial partners. However, since the focus is on our two benchmarks
(RF-circuits and Power-MOS) in the nanoCOPS project, it will be more difficult to
get data for these examples. Of course, the research on Task T2.6 will continue
as planned officially, i.e., we will try to achieve reasonable results.
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