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1 Introduction to Parametrized Model Order Reduction

Systems of large order appear in many applications. For an efficient simulation it is
necessary to reduce the system dimension by a reliable Model Order Reduction (MOR)
method. Nowadays, it is often required that the systems include physical parameters
to allow more flexibility in the simulation. These parameters should be preserved in
the reduced-order system: a task that motivated the development of new methods
for MOR, called parametric, or parameterized, model order reduction (PMOR). Larger
parts of Section 1 are taken from [6]. For further informatio,n see [8].

1.1 System Description

Consider a parameterized dynamical system of order n with parameter-dependent sys-
tem matrices E(p), A(p) € R™", B(p) € R™™, C(p) € R™>™:

E(p)i(t;p) = A(p)x(t;p) + B(p) u(t), ™)
y(t;p) = C(p)x(t;p).

The parameter p can be a scalar or a vector. We assume that, for all considered
parameter values, E(p) is invertible and the system is stable, i.e., the eigenvalues
of E~1(p)A(p) lie in the open left half of the complex plane’. In the following, the
parameter dependency of the state = and of the output y is (often) omitted in notation
for a simplified presentation. We define a parameterized transfer function accordingly
(where s € iR),

G(s,p) = C(p)(sE(p) — A(p))"'B(p). ()

PMOR, based on projection, seeks (full column rank) matrices V, W € R™" with
r < n such that the output error, y(t) — y(t), between the original and the reduced-
order system

WTE@p)V i(t) = WTAP)V @(t) + WTB(p)u(t), (3)
i) = CoV i),

is small and the computational time for the simulation of (1) and (2) is decreased sig-
nificantly by using (3) instead. The reduced-order transfer function is obtained analo-
gously,

A

G(s,p) = C(p)V(sWTE(p)V — W' A(p)V)"'W' B(p). (4)

1.2 Existing PMOR Techniques

The reduction is especially of value (w.r.t. reduced computational complexity) if the
parameter dependency in (1) is affine in the system matrices [3], i.e., we have the
following matrix representations

E(p) = E() + 61(p)E1 4+ ...+ €pE(p>EpE,
A(p) = Ao+ filp) AL + ...+ fr,(p)Ap,,
B(p) = Bo+ g1(p)B1 + ... + gp, (p) Bpy,
C(p) = Co+h(p)Cr + ...+ hp,(p)Chrs»

"Usually single, free-running, oscillators are not that large in size. Hence, for the moment, we neglect them.



leading to reduced-order matrices

E(p) = WTE(V = WTEV + 22 e(p)WTEV,
Alp) = WTAR)V = WTAV + Y2 Fp)WTAY, )
f?(p) = WT'B(p) = W'By, + folgi(P)WTBz‘,
Clp) = Cp)V = CoV + S hi(p) GV

It is assumed that the number of summands Pg, P4, Pg, Pc is moderate. The pa-
rameter dependency in the functions e;, f;, g;, h; might be linear or nonlinear. The
reduced parameter-independent matrices WP E;V, WT A,V € R™", WTB; € R™™ and
C;V € R can be pre-computed (i.e., off-line). The computation of the projection ma-
trices V and W is of main interest in PMOR and differs very much along the presented
approaches.

1.2.1 POD and POD-Greedy

The POD (Proper Orthogonal Decomposition) [50] method, or also called PCA (Princi-
pal Component Analysis), is based on the singular value decomposition (SVD).

In the PMOR setting, the system is solved for a number of state vectors corresponding
to various parameter configurations pi, pe, ..., pne,,, @nd these state vectors form the
snapshot matrix Xgyp € R™Nsvp, Here, Ngy p is the number of state vectors given to
the snapshot matrix.

The SVD produces a diagonal matrix Ssyp of the same dimension as Xs,p and with
nonnegative diagonal elements and unitary matrices Usyp and Vs p so that

_ T
Xsvp = UsvpSsvpVayp-

The first columns of Usyp are chosen as projection matrices for both V, W, i.e. the
singular vectors corresponding to the largest singular values.The singular vectors form
the projection matrices V and W as used in (5), typically with " = V.

In a time-dependent PMOR setting the POD is often used in a POD-Greedy algorithm.
The POD-Greedy algorithm [23, 51] meanwhile is standard in Reduced Basis (RB)
Methods.

In short, the POD-Greedy algorithm uses the SVD to condense trajectories corre-
sponding to certain parameter configurations, which were chosen by finding the max-
imum of an error estimator A(p) over a set of samples of the parameter domain. The
error estimator gives bounds to the approximation error and stops the MOR algorithm
once a predefined tolerance is satisfied, see [15, 24, 26]. In general, the RB Methods
require an affine decomposition as (5).

Let = denote a finite sample of the parametric domain and set S; = {p'} and X, =
[z(p')] and N = 2. Let Z; = Z\{p'}. The steps of the Greedy sampling process are:

1) find p" = arg max .=, Ax_1(p),

2) Set Sy = Sy_1UpPY, Exn=Exa\{PV} Xy =[Xn-1 z(pV)],

3) While (max,cz Ay_1(p) > tolerance and =y # 0, N:=N+1, goto 1).such that the
Greedy algorithm finds a set of parameter values Sy and a corresponding snapshot
matrix Xy.

1.2.2 Interpolatory methods for PMOR

A short description of several interpolatory methods for PMOR follows.
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A) (Multi)parameter moment matching
A generalization of moment matching MOR, called (multi)parameter moment matching,
was first considered in [14]. This method is based on a multivariate Taylor expansion
with expansion points in frequency and parameter space. We denote the parameter
points by p1, ..., px and the frequency expansion points by sy, ..., sy in the following.
The number of matched moments is ¢q. The approach ensures the following moment
matching,

ok 0° ok 0° .

@a—ng(Siapj) = @6_]95(;(8“%)’

fori=1,...,L,j=1,...,K,k=0,...,q, { = 0,...,q. Improvements, which avoid
explicitly moment matching can be found in [17, 18, 30].

B) Transfer function interpolation

Another approach for parameter-preserving MOR is based on a combination of bal-
anced truncation (BT) at certain distinct parameter values (the interpolation points)
p1, ..., pr With interpolation. The approach, which is called transfer function inter-
polation, was originally proposed in [4] using polynomial interpolation. It leads to a
reduced-order transfer function

A ~ ~

G(s,p) = Y _ Li(p)Ci(sE; — Aj)™'B;, (6)

J=1

where L;(p) are the Lagrange basis polynomials. The locally reduced matrices E;, A,
Bj, Oj (of possibly different reduced order ;) are obtained by applying K-times BT on
G(s,p;) with j = 1,..., K. This PMOR approach can simply be extended to a hybrid
approach of BT, by applying different kinds of interpolation, as demonstrated in [5] for
rational interpolation. However, in contrast to polynomial interpolation, other interpola-
tion techniques will not necessarily preserve the structure of the original system in the
reduced-order representation. PMOR by transfer function interpolation benefits from
the system theoretical properties of BT, such that we can guarantee stability for the
reduced-order system and an error bound can be derived, see Subsection 1.3.

C) Piecewise 7, tangential interpolation
A structure-preserving MOR method called piecewise H, tangential interpolation (with
‘H, optimal frequency points) was introduced in [3]. Local projection matrices are com-
puted by applying the lterative Rational Krylov Algorithm (IRKA) [22] on G(s,p;) and
concatenated

V=W, Vo, Vk], W =[Wy, Wy,--- Wk,

to obtain (4). Thus, the dimension of the reduced-order system is K - r. Note that
the number of columns K - r of V and W can further be reduced by an SVD or a
rank-revealing QR factorization to ensure that IV and W have full rank. IRKA computes
optimal (frequency) shifts s; and corresponding tangential directions b;; and c¢;; such
that (4) matches the p-gradient and p-Hessian of the original system response (2) with
respect to the parameters:

Vpch(shpj)bij = Vpcgé(si,pj)bij, Vich(sl,pJ)bU = Vicgé(si,pj)bij,



fori=1,...,r, j = 1,... K. Additionally, the usual tangential interpolation properties
hold

G(s4,p)bij = G (51, p;)bij, :G(si,pj) = cfj@(si,pj)-

D) PMOR by matrix interpolation

PMOR by matrix interpolation [39] computes a parameterized reduced-order system
by interpolation of locally reduced system matrices. A parameterized reduced-order
system (3) is obtained by interpolation of the locally reduced system matrices £, A;,
Bj, éj, where

Ep) = LowMGET Y Ap) = Y @) MAT
B(p) = ijle(p)Mij, Clp) = ijle(p)CjTj_l,

with properly chosen transformation matrices M;, 7, € R™" and weights w;. The
transformation matrices are chosen so as to give a common physical meaning to all
reduced state vectors: M; = (W/R)™!, T, = R"V; with R € R™*" obtained from a
thin SVD of [w;(p)V1,wa(p)Va, ... ,wk(p)Vk|. Note that one R is used to compute the
transformation matrices M;, T for j =1,..., K.

E) Generalized Loewner matrix L approach

Two-variable rational interpolation for MOR of single parameter systems is proposed
in [1]. In this work, a generalized Loewner matrix LL is constructed from measurements
such that a (two-variable) reduced system is given by the null space of L in barycentric
formula.

Conclusion

All interpolatory approaches can be applied for PMOR of linear parametric systems.
The parameter-dependence in the matrices may be linear or nonlinear, but is assumed
to be smooth enough to allow for approximation by interpolation. An affine parameter
dependency is not required for PMOR by transfer function or by matrix interpolation.

1.3 Error Bounds

For PMOR by transfer function interpolation as described in Section 1.2.2 B), a global
error bound can be derived by a combination of the BT H, error bound at the interpo-
lation points p; and an error estimate for the interpolation error [4]. We obtain an error

N

bound for ||G(s,p) — G(s,p)||, exemplarily described for (6), using the BT error bound
(for the locally reduced systems by a given error tolerance tol)

n

1G(5,p;) — G(5,p5)|l#e0 <2 Z o; | < tol. (7)

iZTj+1

The error over the whole parameter interval Z is bounded by

R ) k
sup [|G(s,p) — G(s,p)|| < sup ||Ri(G, s, p)|| + tol SuIZ>|ZLj(p)|,

sect sect pe

peET peT 3=0



with a remainder R (G, s, p) which depends on the applied interpolation technique.
For parametrized linear time invariant systems, an a posteriori error bound for the trans-
fer function of the reduced model is proposed in [19]. The error bound is independent
of the discretization method (finite difference, finite element, finite volume) applied to
the original PDEs. Furthermore, the error bound can be directly used in the discretized
vector space, without going back to the PDEs, and especially to the weak formulation
associated with the finite element discretization, which must be known a priori for de-
riving the error bound for the RB method. This is typically useful when only discretized
systems of ODEs/DAEs are available, for example the system of DAEs established
based on modified nodal analysis in circuit simulation.
Technically, the error bound enables automatic generation of the reduced models com-
puted by parametric model reduction methods based on interpolation of the transfer
function, e.g. Krylov subspace based methods [7], which is desired in design automa-
tion for circuits and MEMS. The error bound, depending on the residuals of the primal
and the dual system, is valid for systems of the form (1), where the transfer function (2)
fulfills

inf sup ﬁﬁGﬂ =: B(p) > 0.

wetn 29D Tl Tz
w#0 v#£0

2 PMOR for Uncertainty Quantification

In the last years, the discussed PMOR techniques have been used for several Uncer-
tainty Quantification (UQ) methods like, e. g. Monte Carlo (MC), Stochastic Collocation
(SC), and Stochastic Galerkin (SG).

One of the first publications in this field was [31], where a projection based MOR
method for RLC interconnect circuits is presented including variational analysis to cap-
ture manufacturing variations.

The SG approach yields a coupled deterministic system to which non-parametric MOR
methods can be applied. This is done, e.g., in [35, 54].

In [41], the SG method is considered for linear dynamical systems with random pa-
rameters. On the one hand, the original systems are reduced in the state space and
the SG scheme is applied to the reduced systems. On the other hand, the SG method
changes the original systems into a huge linear dynamical system, where MOR is used
in the state space of this Galerkin system.

In the first approach, PMOR is examined for the original systems. The used PMOR
strategy collects local bases for the reduction of systems for different samples of the
parameters and an SVD is employed to construct a global basis for a reduced system,
cf. [3].

In [42, 43], a variance-based sensitivity analysis is applied to the transfer function. Typ-
ically, just a few random parameters are relevant for the variations of the output. Thus
unessential random parameters are identified by the sensitivity analysis. An MOR of
the random space is achieved by restoring the insignificant random variables to con-
stants. In Section 2.1 this is described in some more detail.

Passive electromagnetic devices under random input conditions are considered in [47].
The authors propose a Krylov-based PMOR in combination with sparse grid SC and
apply it to a coaxial cable.

In [9] a POD-reduced model is used for SC and MC simulation of the time-harmonic
Maxwell’s equations with uncertain material parameters. The speedup is much higher



for the MC but also visible for SC and the relative errors for the output voltage are of
order 107% and 102 for SC and MC, respectively.

A combination of RB and SC is in [16] applied to stochastic versions of the diffusion
equation and the incompressible Navier-Stokes equations.

In [21] a non-linear PMOR method for large-scale statistical inverse problems in a
Bayesian inference setting is applied to a combustion problem governed by an advection-
diffusion-reaction partial differential equation. The reduced order model (ROM) is then
used for the Markov chain MC sampling employed by the Bayesian inference approach.

2.1 Uncertainty Quantification

2We consider UQ by expanding the solution in so-called generalized Polynomial Chaos
expansions. In these expansions the solution is decomposed into a series with orthog-
onal polynomials in which the parameter dependency becomes an argument of the
orthogonal polynomial basis functions. The time and space dependency remains in
the coefficients. In UQ two main approaches are in use: SC and SG. In SC the coeffi-
cients in the expansion are approximated by quadrature and thus lead to a large series
of deterministic simulations for several parameters. In SG one assumes a finite sum of
the expansion as approximation to the solution and requires that the vector of residuals
is orthogonal to all basis functions used in the finite expansion (using an inner product
in parameter space), which leads to one big, but coupled, system. Also here quadra-
ture can be applied but this does not automatically lead to decoupling as happens for
SC.

We will denote parameters by p = (py,...,pp)T again and assume a probability space
(Q,A,P) given where A represents a c-algebra, P : A — R is a measure and
p=pWw):Q — B CRF. Here we will assume that the p; are independent.

For a function f : B — R, the mean or expected value is defined by

%U@ﬂ=<f>iAﬂMMMPWFiéﬂmp@Mp

The specific probability distribution density is defined by the function p(p). A bilinear
form < f, g > (with associated norm L?) is defined by

<ﬁg>=AQﬁ»mmp@mp:<fg>.

We assume a complete orthonormal basis of polynomials (¢;):en, ¢; : B — R, given
with < ¢;, ¢; >= d;; (¢,7,> 0). When P = 1, ¢; has degree i. To treat a uniform distri-
bution (i.e., for studying effects caused by robust variations) Legendre polynomials are
optimal in some sense; for a Gaussian distribution one can use Hermite polynomials
[34, 52]. A polynomial ¢; on R¥ can be defined from one-dimensional polynomials:
¢i(p) = [1', ¢i,(pa)- Actually i orders a vector i = (i1, ..., ip)7.

A solution x(¢,p) = (z1(t,p), ..., z.(t,p))* of a dynamical system (which we do not
further specify) becomes a random process. We assume that second moments are
finite: < 23(t,p) > < oo, forallt € [to,t;] and j = 1,...,n. We express x(t,p) in a

2This section is taken from Section 5 in [10].



Polynomial Chaos expansion

sz ol ®)

where the coefficient functions v;(t) are defined by

Vi<t) =< X(ta p)? @(p) > (9)

Here the inner product is considered component wise. A finite approximation x™ (¢, p)
to x(t, p) is defined by
Z vi(t) oi( (10)

When exploiting SC, the integrals (9) are computed by (quasi) MC, or by multi-dimensional
quadrature. We assume quadrature grid points p* and quadrature weights wy, 0 < k <
K, such that

v;(t) =< x(t,p), ¢ >~Zwkx t,p") #:(p®). (11)

Typically, for low numbers of random parameters, Gaussian quadrature is used with
corresponding weights. We solve the dynamical system for x(¢,p*), k = 0,..., K (K +1
deterministic simulations). By post-processing we determine the v;(¢) in (11).

As alternative to SC, SG can be used. One puts the approximation (10) in the equations
of the dynamical system and makes the residuals orthogonal to each basis function
used. The result is a big system that involves all coefficients v;(t), 0 < i < m, as un-
knowns. For linear dynamical systems one can determine all integrals over B exactly,
in advance. For nonlinear systems one may approximate these again by quadrature,
similar as done for SC.

After determining the approximation (10) by SC or by SG, the expansion provides a
response surface facility from which the solution can be determined for any values
of ¢t and p. It also provides (fast) information about mean, variance and sensitivity.
In [2, 49, 38] efficient methods are described to determine the coefficients by SC. In
[49, 42, 41] also the combination with (parameterized) MOR was studied.

In Fig. 1 at the top-left MC Sampling and Importance Sampling generate a list of sam-
ples of p for which the dynamical system has to be solved, after which statistical anal-
ysis can be done. At the top-right the alternative path by UQ is indicated. Stochastic
Collocation provides a list of deterministic values p for which the dynamical system
has to be solved. In both cases parameterized MOR (pMOR) can be of help to faster
provide approximations. The path via Stochastic Galerkin results in a huge system
that involves all coefficients. The system is independent of p, due to averaging. Here
normal MOR can be of use - it may be even necessary to reduce the huge system to
be able to obtain approximative solutions.

In [29, 49, 40] (response surface) approximations or the combination between them
and more accurate solutions was studied for Failure Analysis. In [37] the method can
shift the (probability density) weighting function in the inner product to the area of inter-
est (shifted Hermite chaos). One also can use a windowed Hermite chaos. The shift is
tuned by some optimization procedure. The windowed Hermite chaos looks to be the
most accurate alternative. In [38] various multi-dimensional integration methods have
been studied for the purpose of efficient reliability analysis.

9
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Figure 1: The various ways to obtain statistic information.

Central in Fig. 1 is the question on dominant parameters. In [42, 43] the sensitivity
coefficients of parameters to the variance of the solution have been studied via a Sobol
decomposition [44] and using uniform distributions. Assuming a scalar solution z in (8),
the variance of z (at time t) reads as

Var, (t Z v;

The total normalized sensitivity of the j-th random parameter can be written as

Sj = with Vj::va, for j=1,...,P.

iEZj

J
Var,’

Here i € Z; if and only if ¢; varies with respect to the random variable p; , i.e., ¢,
includes a non-constant univariate polynomial in p; . Clearly the bounds 0 < §; <1
apply for each j. One obtains approximations of these total normalized sensitivities by
a truncated expansion

= Z v,, with IJD ={i €Z; : degree(¢;) < D}.
i€zp

Although the bounds 1 < S; +--- + Sp < P hold, the sum of the total normalized
sensitivities is often close to the lower bound. In view of this variability of the sum of
sensitivities, we further normalize

-1

P
S]*:SJ<ZSl) , ]:1,,P
=1

We now have S} +--- + Sp = 1. This facilitates to compare the S;. After determining
the dominant 5% [42] we only deal with the S;. Note that Var, and the S; vary with
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frequency

Figure 2: Normalized variation sensitivities of H(s, p) for conductances as random parameters
[42].

t. If we assume a partitioning (possibly after re-ordering) p = (q,r), where q are P,eq
parameters that will be allowed to vary, while r are the parameters set to a fixed value
ro, We obtain, for the error §(t, ry) in doing this, the estimate in the following theorem
[42, 43].

Theorem (Scaled approx. error after fixing parameters)

< (a:(t,q, r) —x(t, q, ro))2 >

Ot ro) = Var, (1) ’

< (14 ) S, (12)

j:Prcd""l

In (12), ¢ is a confidence parameter, and q € R and r, € B. with P(p~}(Rfrd x
B.)) > 1 — ¢ (here p~! is the inverse mapping in the sense of p~}(C) := {w € O :
p(w) € C}). Note that 6*(¢,r) is scaled by Var,. It assumes that Var,(¢) is bounded
away from 0. Clearly, if Var,(¢) is bounded, small S;, corresponding to the parameters
r set to ry, lead to an upper bound for the mean of the squared approximation error.
In [42] the parameter reduction is considered for the transfer function H (s, p) where
s € iR on the imaginary axis. Now, first an approach similar to (12) is applied to the
transfer function H (s, (q, o)) after splitting p, resulting in an error estimate for 6% (s, r)
and leading to a mean squared error < |H(s,q,r) — H(s,q,ro)|> >. From this an upper
bound for max;~o < x(t,q,r) — x(t,q,ro) >, for the solution z(¢, p) in the time domain,
can be derived. For an RLC-circuit, Fig. 2 shows a typical outcome for the variation
sensitivities of H(s, p) of various conductances as random parameters. Similar results
can be shown for capacitances and for inductances. By this we obtain error estimates
for the coefficients in the generalized polynomial chaos expansion by which we can
provide error plots of the mean and of the variance (as functions of time).

Next, parameterized MOR on H(s, (q,ry)) can be applied, which leads to an additional
error. In [42] a typical Krylov-subspace MOR-technique was used after first applying
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SG. As alternative, BT MOR techniques could be applied, which provide error estima-
tion. This type of MOR-technique leads to an L,-norm estimate (in time). In [41] the
authors did focus on SG and considered first reducing the original system by parame-
terized MOR, followed by SG, versus first applying SG on the original system, followed
by a (global) MOR.

The sensitivity technique described in this section can lead to variation-aware MOR
approaches. Clearly, MOR should not lead to reduced models that do not preserve the
main statistical characteristics of the full model.

2.2 Reduced Basis Method for Uncertainty Quantification

We shortly describe RB for UQ. The beginning is very similar to Section 2.1. Let
(Q, F,P) denote a probability space. Given is a square integrable random parameter
variable P : Q — I" C R (with realization p = p(w) € I'), with probability density function
p and a function s : R* x I' — R¢, corresponding to a mapping of realizations of a
random variable to the output of the electromagnetic system. The state vector x € R”
depends implicitly on the realization of the random variable.

In statistical analysis, the expectation and variance of quantities of interest like the
response surface of the output functional s w.r.t. uncertain parameters is computed.
SC computes statistical quantities like the mean by a quadrature rule

Nsample
B6)0) = [ sy~ Y st
=1

where the realizations ¢; are the sample points, 75, denotes the sample size and
the weights w; are determined using the probability density function p. See [13] for
more details.

To enhance the computation speed of statistical quantities, RB MOR can be applied
to generate a ROM for the domain of interest, which will greatly increase the speed to
perform the MC simulation or SC. Under the assumption of bounded variations, the RB
error estimators can also be used to certify the accuracy of the computed statistics.
See [25] for more details.

3 Outlook: Scope for nanoCOPS

Section 2.1 shows that UQ can deal with material parameters for nonlinear problems.
The described MOR techniques in the Sections 1 and 2 show confidence that PMOR
can be of help to reduce the size in case of linear problems. Also, implementations can
be made to work for UQ purposes.

Clearly, also two additional steps will have to be made: generalization to parameter-
ized, nonlinear problems, as well as provisions in being able to deal with geometrical
parameters. Apart from that parameterized MOR for coupled problems will have to be
considered, together with Work Package WP1.

e MOR for nonlinear problems. POD, as described in Section 1.2.1, is one of the
methods that can be used. POD is also an essential ingredient in a regression-
based method, like DEIM (Discrete Empirical Interpolation Method) [12]. Modi-
fications to DEIM are needed to guarantee that after reduction a passive model
remains passive [11]. In this area we will have to make further research.
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Figure 3: Cross section and three dimensional model of device [33].

e Varying geometry. This is not directly a problem of circuits, which usually are fixed
networks. However, in the modeling for the electromagnetics and/or heat small
displacements already can result in a different discretization, which can influence
the dimension of the unknowns [46, 45].

The geometry aspect we describe a bit further.

Since in many applications, used in power electronic systems, the physical domain
cannot be determined precisely, the problem with the uncertain geometry has been
formulated as the first attempt to cope with a more general problem called Use Case I:
Power-MQOS - electro-thermal-stress coupling. Such variations result from the imper-
fections in manufacturing processes, including, for example, sub-wavelength lithog-
raphy, lens aberration, and chemical-mechanical polishing [36]. The problem under
consideration comes from the automotive industry, where there is a need to handle
the demanding electro-thermal operational constraints to design both components and
systems. Therefore, a similar structure to the one proposed in the USE Case | has
been considered as a case study. The geometrical finger structure of a device de-
sign has been shown on Figure 3. The source and drain contacts are located at the
top of the design. The current to drains and away from the sources of the individual
channels is ultimately transported by series of metal stripes and via patterns. In our
experiment, the height of the metal3 layer and, as a result, also the z-th coordinate of
the source and drain contacts, located at the top of design, are assumed to be uncer-
tain. The uncertainty associated with geometry is modeled by the uniform distribution.
This topological uncertainty (the domain with rough boundaries), in consequence, has
impact on all the device characteristics including the total resistance, the interconnect
resistance, resistance in particular layers, for example. In general, the computational
methods used to model uncertainties can be divided into two major categories: these
based on a statistic approach like the MC method and its variants, and methods based
on a non-statistical approach such as SG and SC. Thus, to deal with this problem, the
following methods have been considered and proposed:

e the crude MC simulation [20], in order to investigate the effect of uncertain geom-
etry on relevant quantities such as the total and interconnect resistance,

e the pseudo-spectral approach (SC), where the application of a stochastic map-
ping that transforms the deterministic/ stochastic problem of a random domain
into a stochastic problem in a deterministic (fixed) domain, has been applied
[27, 48, 53],
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e the pseudo-spectral approach (SC), where the geometric uncertainties [32] can
be modeled by the spatially varying threshold, for example in the Heaviside pro-
jection [28].

4 Planning

Between M6-M12 implemenation will start. Here choices will have to be made on best
methods to be chosen. As indicated above, also new methods may have to be devel-
oped, and existing methods may have to be improved during implementation (which is
a natural step in industrializing a particular method). We deal with

e PMOR for (linear) electromagnetics, or heat or circuit parts. Here several methods
are available.

¢ MOR and PMOR for linear, coupled problems. Here some first steps are known
in literature. All methods are candidate for improvement.

e PMOR for nonlinear problems. Here bilinear approximatoins will be considered
more closely. A method like DEIM [12] still has to be extended to parameterized
problem, albeit that some steps (like generating an overall basis) may be similar
to the case for linear problems.

e Geometrical variations. For the moment this will be the second stage type of
variations, see also Section 5.

We will prepare the above topics for discussion at our 2nd nanoCOPS Workshop, on
Oct. 6-7, 2014 (M12), at HUB, Berlin.

5 Risks

First experiments with topology optimization learned us impact on FEM/Finite Vol-
ume/FIT discretizations. This can even make UQ by SC much less trivial than ex-
pected: the method can become intrusive - which, clearly, will become a point of atten-
tion by our industrial partner MAG.
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