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1 Introduction

Appropriate methods for treating uncertainties coming from undesired variabilities and imper-
fections in the manufacturing process are needed. Uncertain parameters may be material prop-
erties, geometrical parameters and environmental parameters, such as, e.g., the temperature
at the device boundaries. Task T2.1 improves on methods for characterizing given uncertain-
ties in volumetric discretization of the Maxwell equations and on techniques for propagating
uncertainties through the field simulation. A special emphasis is on field-circuit coupled models
and electromagnetic-thermal coupled models.

2 Models

From the numerous types of possible model input parameters, we focus on uncertainties in the
material properties and the geometry. In general, in a stochastic setting, uncertain inputs are
modeled by means of (infinite-dimensional) random fields and hence, for computer simulations
the task of discretization needs to be accomplished. Several techniques have been proposed
to this end. We refer to the Karhunen-Loève expansion, the generalized Polynomial Chaos
technique, as well as model specific grid based, or analytic representations. Moreover, as
the dimensionality of the discrete representation is directly related to the computational cost,
efficient low-rank representations are highly desirable and efforts should be devoted to their
construction. In this context controlling the respective (modeling) error in the stochastic solution
is of importance.

2.1 Materials

Material uncertainties can be found in, e.g., the (nonlinear) material constitutive law [1]. It has
been observed that in several applications this is the most influential source of uncertainty
[2]. The stochastic modeling is complicated by the fact that the nonlinear material relation and
hence the random field is subject to shape constraints. In particular the monotonicity and the
smoothness need to be preserved. We investigate how this can be achieved by means of the
Karhunen-Loève expansion and flexible spline representations of the constitutive law. In partic-
ular relations for the input discretization errors and for accomplishing the shape constraints are
derived.

2.2 Geometry

Uncertainties in the geometry may refer to both an interface between two different materials
and the boundaries of the computational domain. A major difficulty arises as the equations are
formulated on different domains due to the uncertainty. Also shape perturbations have to be
modeled appropriately and re-meshing efforts should be kept minimal. Here, spline represen-
tations are used to model shape deformations. Moreover, in the context of sensitivity analysis
we employ the velocity method [3], a well established technique from shape optimization. A
transformation Ts = xs can be defined by means of the differential equation

d

ds
xs = V, s ≥ 0, (1)

endowed with suitable initial conditions, where V is referred to as velocity field, see also Fig-
ure 1.
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Figure 1: General model geometry for the eddy current problem.
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Figure 1: General model geometry for the eddy current problem.

Institut für Theorie Elektromagnetischer Felder
Schloßgartenstrasse 8
D-64289 Darmstadt

Abstract

Keywords:

Preprint submitted to Elsevier June 20, 2014

Ts

Figure 1: Velocity Method: family of transformed interfaces/domains by means of Ts.

Considering uncertainties of geometrical parameters is particularly challenging. A straightfor-
ward procedure consists of changing the geometry, remeshing and recalculating. This ap-
proach is, however, unfeasible because the numerical noise due to a possible change of the
mesh topology may exceed the variations due to the uncertainty [4]. It is absolutely necessary
to define geometrical uncertainties by a continuous mapping from a reference geometry [5].
The intended developments go in that direction.

3 Algorithms

Once a finite representation of the stochastic inputs is at hand, uncertainties need to be prop-
agated efficiently through the model. To this end various deterministic techniques, such as
spectral methods [6, 7] and moment based perturbations methods [8], have been found to be
superior to classical Monte Carlo sampling in several circumstances. This is true in particular
for low-rank input representations and an analytical input-output dependence of the model.

3.1 Stochastic Collocation

The stochastic collocation method has received considerable attention due to the ease of han-
dling nonlinear problems and its non-intrusive character [9, 10]. For a quantity of interest F ,
depending on an input random field Y , approximations of statistical moments are obtained by

E
[
F (Y )

]
≈

∑
k=1,...,N

wk F (Y (k)
)
,

var
[
F (Y )

]
≈

∑
k=1,...,N

wk

(
F (Y (k))− E

[
F (Y )

])2
.

Here, Y (k) and wk represent the collocation points and weights, respectively. See also Fig-
ure 2 for a popular sparse grid construction as opposed to stochastic Monte Carlo sampling.
They are chosen according to the underlying probability distribution of Y , giving rise to spec-
tral convergence rates of the methods in many situations. However, most of the results have
been established for linear model problems with uncertainties in the coefficients and additional
efforts with regard to the application to complex engineering applications, with non-linearities
are needed.

3.2 Perturbation

Perturbation methods are among the most efficient methods for uncertainty propagation, though
limited to small input variations. The input random field is represented in the form Ys = Y + sỸ ,
possibly infinite-dimensional. By means of a stochastic Taylor expansion

F (Ys) = F (Y ) + s dF (Y ; Ỹ )︸ ︷︷ ︸
:=dFỸ

+O(s2) (2)
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Figure 2: Smolyak sparse grid on the left and Monte Carlo sampling of the two-dimensional
random vector on the right.

approximations of the first two statistical moments are given by

E[F ] = F (Y ) +O(s2), (3)

var[F ] = s2E[dF 2
Ỹ
] +O(s3). (4)

With the gradient at hand, the computation of E[dF 2
Ỹ
] now only involves the evaluation of high-

dimensional integrals by means of sparse-grid or Monte-Carlo techniques. The asymptotic
expressions (4) are numerically justified [11], whereas the efficient estimation of the remainder
terms, indispensable for the method’s reliability is still work in progress.
The computation of gradients with respect to geometry, i.e., shape calculus, is rather involved.
Recently, based on the velocity method, shape calculus has been embedded in a differential
form setting [12]. This approach is not only well suited for electromagnetics but also typically
simplifies manipulations. This work further contributes to the application of shape calculus
to electromagnetics with special emphasis on shape derivatives of fields. This is particularly
important for the propagation of uncertainties given by low-rank representations of stochastic
geometries.

4 Outlook

Further work on Task 2.1 will focus on uncertainty quantification for field-circuit coupled and
electromagnetic-thermal coupled models of nano-electronic components. The specific struc-
ture of these models will be exploited to improve the algorithms.
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[10] P. Offermann, H. Mac, T. Nguyen, S. Clénet, H. De Gersem, and K. Hameyer, “Uncertainty
quantification and sensitivity analysis in electrical machines with stochastically varying
machine parameters,” in 16th Biennial IEEE Conference on Electromagnetic Field Com-
putation (CEFC 2014), (Annecy, France), pp. OD3–4, May 2014.
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