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Abstract

This document contains the Public Report on the simulation of coupled problems in the
area of electromagnetic field and circuit simulation. The in-house circuit simulators MECS
(HUB) and LinzFrame (FHO) were coupled with the device/electro-magnetic field solver
devEM from Magwel (MAG), for which as well netlist extraction techniques were proposed
(TUD). Since electronic components behave both linear and nonlinear, two interfaces were
established. The former include most passive devices and on-chip inductors, transmission
lines, baluns, MEMS etc. The latter include semiconductor devices, memristors etc.
The devEM simulator provides the space discretization of the 3D device whereas the cir-
cuit simulators MECS and LinzFrame provide the models for lumped devices (e.g. Spice
models, BSIMxxx, Simkit etc.) and the numerical tools for time (transient) and multirate
integration as well as linear and nonlinear solvers.
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Introduction

This document covers the R&D activities in WP1 and mainly the tasks T1.1 ”Coupled EM-
Device-Circuit and coupled EM-Heat Simulation” and T1.2 ”Multirate methods EM-Device-
Circuit Simulation and electro-thermal power switches”. Moreover, the tasks cover the
couplings between the device/EM simulators devEM and PTM-ET from partner MAGWEL
(MAG) with the circuit simulators MECS from Humboldt University (HUB) and LinzFrame
from FHO and SPICE netlist export from TUD. The MECS and LinzFrame simulators, re-
spectively, serve as master and the devEM simulator correspondingly as slave. The latter
performs the numeric space discretization of the EM/field equations, whereas MECS and
LinzFrame provide the lumped device models for the surrounding circuit and the numerical
simulation engines. The netlist extraction case is similar, however, there is no interaction
after space discretization.
The numerical simulation tools comprise standard techniques such as AC, DC and tran-
sient, based on the well-known BDF techniques with variable step size control and more-
over novel methods such as transient analysis based on spline/wavelet approximations and
multirate methods for radio frequency circuits. Two interfaces for linear devices, such as
capacitors, inductors, baluns, transmission lines etc., and for semiconductors where devel-
oped. For the former the time varying magnetic fields are essential for their functionality
whereas for the latter they can be ignored (when no special devices such as semiconductor
Hall sensors are simulated). Magnetic fields are captured by the vector potentials. Their
time variations give rise to induced electric fields. However in semiconductors the induced
electric field is negligible since the rate of change of the magnetic field is weak. This is
because the conductivity in semiconductors is relatively low in comparison with metals and,
moreover, the typical distances at the nanoscale are too small to give rise to an appreciable
voltage drop. Hence, the magnetic field contributions can be usually ignored in semicon-
ductors, leading to much smaller systems of equations. Moreover linear devices must be
evaluated through the simulator interface only once which simplifies the coupling.
We presuppose basic knowledge on Maxwell’s equations and semiconductor device mod-
eling.

1 3D modeling of devices

1.1 Maxwell’s equation

The four Maxwell’s equation read

∇ × E = −Ḃ Induction law, Maxwell-Faraday’s law

∇ ×H = J + Ḋ Maxwell-Ampère’s law
∇ · D = ρ Gauss’ law
∇ · B = 0 Gauss’ law for magnetism

where E, D are the electric field strength and the displacement, and H, B the magnetic field
strength and induction, respectively. Moreover ρ and J are the electric charge density and
current density, respectively. A dot on a variable denotes the partial derivative with respect
to time : Ẋ = ∂tX. From Maxwell’s equation one obtains the continuity law

∇ · J + ρ̇ = 0 continuity law (1)
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In what follows we assume linear isotropic materials, i.e.,

D = ε E
B = µH (2)

where ε is the dielectric constant and µ the permeability. It should be noted that materials
of different types can be stacked or blocks of different materials can be placed next to each
other. This results into abrupt jumps in the overall permitity ε and permeability µ. How-
ever, generally we assume that the parameters depend on the space coordinate. Magwel’s
simulator devEM employs as unknowns the scalar potential E = −(∇ V + Ȧ) and vector
potentials B = ∇× A. To avoid second order partial differential equations (PDEs) in time,
one may introduce the so called quasi-canonical momentum Π = Ȧ = ∂tA.

1.2 Maxwell’s equations and full 3D device models

1.2.1 Maxwell’s equation in metals

With the Ohmic law J = σE, D = ε IE and the Maxwell-Ampère law one obtains

1
µ
∇× ∇× A =

1
µ

(∇∇ · A − ∆ A) = −σ (∇V +Π) − ε
∂

∂t
(∇V +Π) (3)

From the continuity law (1) we get a second equation

−∇ · J − ρ̇ = −∇ · J − ∇ · Ḋ = σ∇ · (∇V +Π) + ε
∂

∂t
(∇ · (∇V +Π)) = 0 (4)

From the equations (3) and (4) one obtains 4 equations for the scalar and vector potentials
(V,A).

1.2.2 Maxwell’s equations in isolators

Since in ideal isolators J = 0 and ρ = 0 is valid and moreover linearity of the materials can
be assumed, i.e., D = ε E and B = µH, we obtain with ∇ · D = 0

ε ∇ · (∇V +Π) = 0
1
µ
∇ × ∇ × A =

1
µ

(∇∇ · A − ∆ A) = −ε
∂

∂t
(∇V +Π) (5)

From the equations (5) one obtains 4 equations for the scalar and vector potentials (V, A).

1.3 Maxwell’s equations in semiconductors

As already discussed above, the induction can be neglected in most cases, i.e., Π ≈ 0.
However, we write the equations here without simplification. From Gauss’ law we get

− ε ∇ · (∇V +Π) = ρ, ρ = q (p − n + ND − NA) (6)

where n, p are the concentrations of free electrons/holes, respectively, and ND, NA the
donator/exceptor concentrations. From the Maxwell-Ampère law one obtains

1
µ
∇ × ∇ × A = Jp + Jn − ε

∂

∂t
(∇V +Π) (7)
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where Jn, Jp are the currents densities of electrons/holes, respectively. The current densi-
ties of the electrons Jn and holes Jp are given by

Jn = −q µn

(
n (∇V +Π) −

k T
q
· ∇ n

)
Jp = −q µp

(
p (∇V +Π) +

k T
q
· ∇p

)
(8)

Herein q is the elementary charge, µn, µp the mobilities of electrons and holes, k the Boltz-
mann constant and T the absolute temperature. Finally VT = k T

q is the thermal voltage.
The first term in (8) is the drift term whereas the second term corresponds to the diffusion
current. IN homogeneously doped semiconductors one may say that the drift current is an
Ohmic current corresponding to a conductance σ = q(µp p + µnn).
The densities of electrons and holes read

n = ni exp
V − Φn

VT

p = ni exp
Φp − V

VT
(9)

where Φn, Φp are the quasi-Fermi potentials for electrons/holes, respectively. The continuity
equation holds for the electrons and holes separately, i.e.,

∇ · Jn − q
∂n
∂t

= −q (G − R) = −q U(n, p),

∇ · Jp + q
∂p
∂t

= q (G − R) = q U(n, p) (10)

with generation/recombination terms G, R. Often the net generation rate U(n, p) = G − R
is introduced. The unknown physical quantities are the concentrations of electrons and
holes (n, p) and the scalar potential V and vector potential A, i.e., 6 scalar unknowns.
Alternatively, one can choose as unknowns the quasi-Fermi potentials Φn, Φp instead of
the carriers concentrations. The latter formulation is of practical advantage since the carrier
concentration can vary by orders of magnitude.
Since the equations are underdetermined, the gauge conditions are required, i.e., it should
be noted that the Maxwell-Ampère equation is complete with the following gauge condition

1
µ
∇(∇ · A) + ξ ε∇ (∂tV) = 0 (11)

However this is usually implemented by demanding

1
µ
∇ · A + ξ ε∂tV = 0 (12)

For ξ = 0 one obtains the Coulomb and for ξ = 1 the Lorenz gauge. The system of PDEs is
of second order in time. Introducing the quasi-canonical momentum Π = ∂tA, a first order
system is obtained. For the coupling of a circuit with a device simulator it is preferred to
have a first order system, since circuit simulators are typically based on first order ordinary
differential-algebraic equations in time. The interfaces presuppose therefore a first order
system.
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1.4 Boundary conditions

Metal-semiconductor (Schottky-) contact. Employing the short hand N = ND−NA and (10)
we get the abrupt voltage drop at the contact δV = Φ − V = Vmetal − V

δV = VT ln

− N
2ni

1 +

√
1 −

4n2
i

N2


 p − dope, N < 0

δV = −VT ln

 N
2ni

1 +

√
1 −

4n2
i

N2


 n − dope, N > 0

Isolator-semiconductor contact. The continuity of the scalar potential V is assumed. The
continuity equation for electrons and holes at the semiconductor side determines the po-
tentials uniquely.

Metal-isolator contact. The scalar potential V is the sole unknown. The surface charge at
the contact is obtained from the gradient in normal direction.

2 Coupled EM/device/circuit systems

In the section before, the partial differential equations (PDEs) have been presented, re-
sulting from Maxwell’s equations and the full 3D device models. The PDEs are discretized
in the space coordinates by the device simulator devEM from MAG. Therefore the devEM
device simulator delivers a huge set of ordinary differential equations in time.
In contrary, circuit simulators require lumped models, i.e., the terminal currents, voltages,
magnetic fluxes and electric charges. Their relations exhibit often nonlinear dependencies.
Circuits based on lumped device are formulated by the modified nodal analysis, resulting in
systems of ordinary differential algebraic equations (DAEs) in time. After space discretiza-
tion of the 3D device model, devEM provides to circuit simulators also a huge system of
DAEs. The circuit simulator provides therefore the time integration, also referred to as tran-
sient simulation or initial value problem.

First, we briefly describe the well-known modified nodal analysis for the lumped modeling of
circuits, see Section 2.0.1. Then we discuss the coupling relations for including EM models
into the circuit simulation systems and combine them with the spatially discretized Maxwell
equations. Finally, we apply an adaptive time stepping scheme to the resulting coupled
differential-algebraic equation system.

2.0.1 Lumped circuit modeling

The common approach for simulating circuits is the modified nodal analysis (MNA). It bases
on Kirchhoff’s laws described by

Ai = 0, v = A>e (13)
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with the incidence matrix A, mapping branches to nodes of the circuit. The circuit variables
consists of all branch currents i, of all branch voltages v and of all nodal potentials e. They
are completed by the constitutive element/device equations

i[1] = d
dt q(v[1]) + g(v[1], t), v[2] = d

dtφ(i[2]) + r(i[2], t) (14)

for terminal current and voltage controlling elements, respectively. Notice, all basic types
as capacitances, inductances, resistances and sources are covered by a suitable choice
of the functions q, g, φ and r. Performing the modified nodal analysis, we get the following
reduced equation system having only the nodal potentials e and the currents i2 of the voltage
controlling elements, see [2]:

A[1]
d
dt q(A>[1]e) + A[1]g(A>[1]e, t) + A[2]i[2] = 0, (15)

d
dtφ(i[2]) + r(i[2], t) − A>[2]e = 0, (16)

where the incidence matrix A = (A[1], A[2]) is split with respect to the current and voltage
controlling elements. The equations (15)-(16) are generated automatically from netlists
providing the node to branch element relation (for entries of A[1] and A[2]) as well as the
element related functions q̃, g, φ and r.

2.0.2 Modeling the coupling

We assume that the contacts between the electromagnetic field model and the lumped
circuit model to be perfectly electric conducting such that B · n⊥ = 0 and e · n‖ = 0 with n⊥
and n‖ being the outer unit normal vectors transversal and parallel to the contact boundary.
This motivates the boundary conditions, cf. [1],

(∇ × A) · n⊥ = 0, (∇V +Π) · n‖ = 0. (17)

Denoting by Γk the k-th contact of the electromagnetic field model element with Γ0 being the
reference contact we get the current through Γk as

ik =

∫
Γk

[J − ∂t(ε(∇V +Π))] · n⊥ dσ (18)

with Π = ∂tA the canonical momentum introduced in chapter 1.2. Note that the equation
for J in section 1.2 and the boundary condition (17) guarantee that the sum of all contact
currents equals zero, that means ∑

k

ik = 0.

This model property is necessary for all lumped element descriptions in order to preserve
the Kirchhoff’s current law. In order to reveal the relation to the voltages vk between the
contact Γk and the reference contact Γ0, we express the scalar potential V as

V(x, t) = Vbi(x) + Vc(x, t) (19)

with the contact potential

Vc(x, t) =

vk ifx ∈ Γk

0 else.

Here, we assumed the reference contact Γ0 to be the ground node for simplicity. The
potential Vbi describes the position dependent built-in potential arising by varying doping
concentrations and bonding different materials.
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2.0.3 Holistic DAE system

The circuit DAE system (15) - (16) is extended by currents iM through the contact of the
EM-element and summarized as a DAE of the form

AC
d
dt

dC(yC) + bC(yC, t) + BCMiM = 0, (20)

where yC = (e, i[2])> collects the circuit variables. The spatially discretized Maxwell system
together with the coupling boundary condition (17) are summarized into the system

AM
d
dt

dM(yM, yC) + bM(yM, yC, t) = 0 (21)

where yM = (V, n, p,A,Π)> are the Maxwell system variables from the 3D device equations
and

dM(yM, yC) =

(
yM

(B>CM, 0)yC

)
=

(
yM

B>CMe

)
=

(
yM

vapp

)
bM(yM, yC, t) = βM(yM, vapp, t)

with vapp describing the voltages at the EM device contacts. Analogously to the discretiza-
tion of the Maxwell-Ampère equation and we discretize the coupling condition (18) and
summarize it to

AMC
d
dt

dMC(yM, yC) + bMC(yM, yC, t) = iM (22)

with dMC(yM, yC) = dM(yM, yC) and bMC(yM, yC, t) = βMC(yM, vapp, t).

Collecting (20), (21) and (22), we obtain the coupled DAE systemAM 0 0
0 AMC 0
0 0 AC

︸              ︷︷              ︸
=:A

d
dt

 dM(yM, yC)
dMC(yM, yC)

dC(yC)

︸           ︷︷           ︸
=:d

+

 bM(yM, yC, t)
bMC(yM, yC, t) − iM

bC(yC, t) − BCMiM

︸                    ︷︷                    ︸
=:b

= 0. (23)

2.0.4 Time Discretization

The resulting DAE system (23)

A
d
dt

d(x) + b(x, t) = 0

is solved by the backward differentiation (BDF) methods (cf. [3]), i.e., we solve the nonlinear
systems

1
hn

k∑
i=0

αniAd(xn−i, tn−i) + b(xn, tn) = 0 (24)

at each time point tn. Here, hn := tn − tn−1 is the time stepsize,

αni =
tn − tn−1

tn − tn−i

k∏
j=1, j,i

tn − tn− j

tn−i − tn− j
, i = 1, ..., k,

αn0 = −

k∑
i=1

αni,
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are the BDF coefficients and xn−i are the numerical approximations of the exact solution
x(tn−i) at the time points tn−i. The implemented time integration scheme has the option to
switch to a Runge Kutta scheme (Radau IIa), for starting and restarting the integration.

The adaptive time step control estimates the error for the dynamic components d(xn, tn).
Such a control is more stable and reliable for higher index DAE systems. The error is
estimated by the difference of d(xn, tn) and d(xp

n , tn) with xp
n being the predictor

xp
n :=

k+1∑
i=1

γnixn−i

and

γni :=
k+1∏

j=1, j,i

tn − tn− j

tn−i − tn− j
, i = 1, ..., k + 1.

2.0.5 Implementation issues and results

The construction of the coupled simulation is shown in Fig. 1. It is realized in a Python
framework combining a Python implementation of the HUB circuit solver MECS with a C++
implementation of the MAGWEL’s field solver devEM.

MECS init

t = 0, y = y0, z = z0
method = BDF

maxorder = 6, ...

devEM init

t = 0, x = x0, z = z0
load geometry

mesh generation, ...

solve coupled system

f(∆td(x, y, z), x, y, z, t) = 0

MECS update

t = tnew, y = ynew, z = znew, ...

devEM update

t = tnew, x = xnew, z = znew, ...

MECS stop devEM stop

Coupled EM - Circuit Simulation (Python, C++)

Figure 1: Flow diagram for the coupled field circuit simulation. It is realized in a Python framework
including C++ implementations of the field solver devEM.

A typical design is shown in Fig. 2 where the balun is modeled in full 3D and the surround-
ing circuitry as lumped devices. The figures 3-5 depict the simulation results after time
integration for the magnetic field strength B.
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RS1

VS2

VS3

Figure 2: Test Benchmark: Simple circuit with the balun device. The RF input signals VS 2 and VS 3
are sinusoidal ones operating with 1GHz frequency. The RF output is given as current through the
resistance RS 1.

(a) Balun device top are view. Showing the magnetic
inductance B.

(b) Balun device cross-sectional area view. Showing
the magnetic inductance B.

Figure 3: 10GHz benchmark of Balun device at time point t = 0.3 nanoseconds.

(a) Balun device top are view. Showing the magnetic
inductance B.

(b) Balun device cross-sectional area view. Showing
the magnetic inductance B.

Figure 4: 10GHz benchmark of Balun device at time point t = 0.5 nanoseconds.

11



(a) Balun device top are view. Showing the magnetic
inductance B.

(b) Balun device cross-sectional area view. Showing
the magnetic inductance B

Figure 5: 10GHz benchmark of Balun device at time point t = 0.8 nanoseconds.

Conclusion

This Public Report summarizes the research results on ”Simulation methods for coupled
problems” from the fp7 project nanoCOPS. The EM/field/device simulator devEM has been
coupled with the circuit simulators MECS from Humboldt University and LinzFrame from
University of Applied Sciences of Upper Austria. The two latter simulators employ the well-
known Modified Nodal Analysis and the industry standards for the lumped circuit models
RLCG, MOS and bjt semiconductors, such as the BSIMxxx models from the University of
California at Berkeley and the Simkit library from NXP Semiconductors. The device sim-
ulator serves for the spatial discretization of the partial differential equations and provides
via an interface a system of ordinary differential-algebraic equations in time, whereas the
circuit simulators perform the numerical time integration and serve as the master.
The simulators were coupled holistically, i.e., strong coupling where full Newton-Raphson
methods are applicable. This contrasts to co-simulation approaches, where only iterative
relaxation based methods are applicable. Co-simulation, though easy to implement, suf-
fer from poor convergence speed or even fail to converge when the underlying physical
problem, e.g., a system of ordinary or partial differential equations, does not fulfill special
requirements such as a diagonal dominance after space and time discretization. In con-
trary, holistic simulations with full (damped) Newton-Raphson iterative solvers for the re-
sulting discretized equations normally converge rapidly. Failure of convergence are mainly
caused by an inappropriate physical modeling, initialization, or space discretization of the
underlying partial differential equations.
Section 1 summarizes basic electro-magnetic field theory, corresponding gauge equations
and semiconductor theory. Moreover the spatial discretization of the electro-magnetic field
and device equations are derived, with emphasis on semiconductor devices. Section 2
deals with the holistic coupling of a circuit simulator with a device simulator. Since we
treat both linear and nonlinear devices, two interfaces were established. Linear devices
must be evaluated only once, since the Jacobian matrices of the algebraic and dynamic
contributions are independent of the state variables, and the device simulator provides via
the linear interface sparse matrix stamps for the algebraic and dynamic contributions of the
device separately. This can be achieved by a preprocessing step. In contrary, the Jacobians
and the right-hand-sides of nonlinear (semiconductor) devices depend on the current values
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of the state variables. A holistic approach requires therefore a permanent exchange via the
nonlinear interface. Therefore the nonlinear interface is significantly more complex than the
linear one and it requires refined validation techniques.
The circuit simulators provide on the one hand the models for the lumped devices and
on the other the classical analysis tools DC, AC and transient (time integration). Time
integration is performed by the Backward Differentation Formulas (BDF) or Gear’s formu-
las, multistep methods which are stiffly stable and also A-stable for orders smaller than
two, for the start up Runge-Kutta methods of higher order such as the RADAU techniques;
and novel spline/wavelet based integration formulas are employed. Since the nanoCOPS
project has also a focus on radio frequency circuits, classical time integration is prohibitively
slow, since the signal waveforms of radio frequency circuits exhibit bandpass characteristic,
i.e., the spectrum is centered at the vicinity of a carrier frequency. The multirate method
decouples the slowly varying envelope from the carrier waveform which makes the holis-
tic device/circuit simulation possible even for radio frequency circuits operating in the GHz
range.
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