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Summary. Recently, the block-diagonal structured model
order reduction method for electro-thermal (ET) coupled
problems with many inputs was proposed. After splitting,
this MOR method reduces both the electrical and thermal
parts separately, using the elimination and block-diagonal
structured MOR (BDSM) methods, respectively. However,
the reduced electrical part has very dense matrices which
is still a computational burden. We propose a modified
BDSM-ET method which leads to sparser reduced-order
models.

1 Introduction

Spatial discretization of ET coupled problems leads
to a nonlinear quadratic dynamical system of the fol-
lowing form,

Ex′ = Ax+xT Fx+Bu, x(0) = x0, (1a)
y = Cx+Du, (1b)

where E∈Rn×n is singular, indicating that the system
in (1) is a system of differential-algebraic equations
(DAEs), and A ∈ Rn×n, B ∈ Rn×m, C ∈ R`×n, D ∈
R`×m, while the tensor F =

[
FT

1 , . . . ,F
T
n

]T
is a 3-

D array of n matrices Fi ∈ Rn×n. Each element in
xT Fx ∈ Rn is a scalar xT Fix ∈ R, i = 1, . . . ,n. The
state vector x = (xT

v ,xT
T )

T ∈ Rn includes the nodal
voltages xv ∈ Rnv , and the nodal temperatures xT ∈
RnT . u = u(t) ∈ Rm and y = y(t) ∈ R` are the inputs
(excitations) and the desired outputs (observations),
respectively. We assume system (1) to be solvable,
that is, the matrix pencil λE−A is regular, ∀ λ ∈ C.
For simplicity, we assume (1) to be weakly coupled,
and has the following matrix structures,

E =

(
0 0
0 ET

)
, A =

(
Av 0
0 AT

)
, B =

(
Bv 0
0 BT

)
,

C =
(
Cv CT

)
, D =

(
Dv DT

)
, u =

(
uT

v uT
T
)T

, with
Av ∈Rnv×nv , Bv ∈Rnv×m/2, ET ∈RnT×nT , AT ∈RnT×nT ,
BT ∈RnT×m/2, Cv ∈R`×nv , CT ∈R`×nT , Dv ∈R`×m/2,
DT ∈R`×m/2, and uv,uT ∈Rm/2. Then the system (1)
can be written as

Avxv =−Bvuv, (2a)

ET x′T = AT xT +xT
v FT xv +BT uT , (2b)

y = Cvxv +CT xT +Dvuv +DT uT , (2c)

with initial condition xT (0)= xT0 and FT ∈Rnv×nv×nT

being a tensor. In this work, we consider MOR of sys-
tem in (2) with large ` and m. It is well known that,
models with numerous inputs and outputs are chal-
lenging for MOR, and most MOR methods produce
large, dense reduced-order models (ROMs) for such
systems.

In [1], the BDSM-ET method was proposed to
overcome this problem, leading to a ROM

Avr xvr =−Bvr uv, (3a)

ETr x
′
Tr = ATr xTr +xT

vr FTr xvr +BTr uT , (3b)
yr = Cvr xvr +CTr xTr +Dvr uv +DTr uT , (3c)

where Avr ∈ Rrv×rv , Bvr ∈ Rrv×m/2, ETr ∈ RrT×rT ,
ATr ∈ RrT×rT , BTr ∈ RrT×m/2, Cvr ∈ R`×rv , CTr ∈
R`×rT , Dvr = Dv, DTr = DT , FTr ∈ Rrv×rv×rT , such
that the reduced order, r = rv + rT � n, and the ap-
proximation error ‖y− yr‖ is small with respect to
a suitable norm ‖.‖. However, matrix Avr and tensor
FTr are dense which is still a computational burden.
In the next section, we propose a modified BDSM-ET
method which leads to sparser ROMs.

2 Proposed modified BDSM-ET method

We propose to first apply the superposition principle
to both the electrical (2a) and thermal (2b) subsys-
tems, respectively. Then we conduct MOR and gen-
erate a block-diagonal structured sparse ROM. With-
out loss of generality, assume that the input matrices
Bv and BT have no zero columns so that, they can be
split into Bv = ∑

m/2
i=1 Bvi , BT = ∑

m/2
i=1 BTi where Bvi ∈

Rnv×m/2, BTi ∈ RnT×m/2 are column rank-1 matrices

defined as Bki(:, j) =

{
bki ∈ Rnk , if j = i,
0, otherwise,

,
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i= 1, . . . ,m/2 and k = v,T. Using the above input ma-
trix splitting, the superposition principle can be ap-
plied to both the electrical and thermal subsystems of
system (2), separately as follows.

Reduction of the electrical subsystem

Using the superposition principle, the electrical sub-
system in (2) can be split into m/2 subsystems

Avxvi =−Bviuv, yvi = Cvxvi , (4)

i = 1, . . . ,m/2, where yv = ∑
m/2
i=1 yvi . Let blkdiag de-

note the block-diagonal matrix defined by the input
arguments. The next step is to reduce the dimension of
each subsystem in (4). This is done by using reorder-
ing and elimination techniques for each subsytem.
Reordering the entries of each subsystem in (4) such
that the first n(i)ve rows correspond to the nonzero rows
of the input matrix Bvi and the rest n(i)vI rows corre-
spond to the internal nodes, leads to a partitioned sub-
systemA(i)

v11 A(i)
v12

A(i)T

v12 A(i)
v22

x(i)ve

x(i)vI

=−

(
B(i)

ve

0

)
uv,

yvi =
(

C(i)
ve 0

)x(i)ve

x(i)vI

 ,

(5)

where x(i)ve ∈ Rn(i)ve and x(i)vI ∈ Rn(i)vI represent the port
and the internal nodal voltages, respectively, and nv =

n(i)ve +n(i)vI , i= 1, . . . ,m/2. Eliminating all internal nodes
from (5) leads to the ROM of (4) as below

Avri
xvri

= Bvri
uv, yvri

= Cvri
xvri

, (6)

where xvri
= x(i)ve ∈ Rrvi , Bvri

=−B(i)
ve ∈ Rrvi×m/2,

Avri
=A(i)

v11−A(i)
v12 Wvi ∈R

rvi×rvi , Cvri
=C(i)

ve ∈R`×rvi ,

Wvi = A(i)−1

v22 A(i)T

v12 ∈ Rn(i)vI ×n(i)ve , and rvi = n(i)ve � nv.
Hence, the reduced electrical subsystem can be re-
formulated as the parallel connection of the reduced-
order subsystems in (6). Consequently, it can be equiv-
alently transformed into a block-diagonal reduced sys-
tem of dimension rv = ∑

m/2
i=1 rvi . Thus, the reduced-

order electrical subsystem in the form of (3a), has the
following matrices, Avr = blkdiag(Avr1

, . . . ,Avrm/2
),

Cvr = (Cvr1
, . . . ,Cvrm/2

), Bvr = (BT
vr1

, . . . ,BT
vrm/2

)T .

Reduction of the thermal subsystem

We observe that, splitting (2a) into m/2 subsystems
in (4) induces the splitting of the nonlinear part in the
thermal part (2b). When the approximation(

∑
m/2
i=1 xT

vi

)
FT

(
∑

m/2
i=1 xvi

)
≈∑

m/2
i=1 xT

vi
FT xvi is introduced,

the thermal subsystem (2b) can be written as

ET x′T = AT xT +ξ
T
v FT ξv,+BT uT , (7)

where we have used the equality
m/2

∑
i=1

xT
vi

FT xvi = ξ
T
v FT ξv,

where FT = {FT1 , . . . ,FTnT
}∈Rñv×ñv×nT , ñv =mnv/2,

being a 3D-array of nT block-diagonal matrices
FTi = blkdiag(FTi , . . . ,FTi)∈Rñv×ñv , FTi ∈Rnv×nv and
ξv =(xT

v1
, . . . ,xT

vm/2
)T . We assume such an approxima-

tion to be possible. Though this seems like a strong
assumption, we have observed it to be valid in some
of our applications.

Also the reduction of the algebraic part induces a
reduction in the differential part leading to

ET x′T = AT xT +ξ
T
vr FTr ξvr +BT uT , (8)

with FTr = {FTr1
, . . . ,FTrnT

} ∈ Rrv×rv×nT being a
3D-array of nT reduced order block-diagonal matrices
FTri

= blkdiag(FTri
, . . . ,FTri

) ∈ Rrv×rv , where FTri
=

F(i)
T11
−WT

vi
F(i)

T21
− F(i)

T12
Wvi + WT

vi
F(i)

T22
Wvi ∈ Rrvi×rvi .

Since system (8) can also be split into m/2 subsys-
tems, the thermal state xT of system (8) can be re-
duced using the BDSM-ET method proposed in [1].
Hence, the reduced thermal system in (3b) also has
block-diagonal structured matrices given by, ETr =
VTET V, ATr = VTAT V, BTr = VTBT , CTr = CT V,
where ET = blkdiag(ET , . . . ,ET ), CT = (CT , . . . ,CT )
AT = blkdiag(AT , . . . ,AT ), BT =(BT1

T , . . . ,BTm/2
T )T ,

V = blkdiag(V(1), . . . ,V(m/2)). The projection matri-
ces V(i) can be constructed as in [2],

range(V(i)) = span{Ri,MRi, · · · ,MrTi−1Ri}, rTi � nT ,

where M = (s0ET −AT )
−1ET ∈ RnT×nT , and Ri =

(s0ET −AT )
−1bTi ∈ RnT , i = 1, . . .m/2. Here s0 ∈ C

is chosen arbitrarily. Hence, the order of the reduced
thermal subsystem (3b) is rT = ∑

m/2
i=1 rTi .

3 Conclusion

By construction, the modified BDSM-ET method leads
to sparser ROMs than the BDSM-ET method pro-
posed in [1] with accurate ROMs. We have compared
the two methods using ET coupled problems with
many inputs from industry.
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