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Summary. Motivated by the aim of an efficient coupled
electromagnetic field and lumped circuit simulation, we
show that one can form the model equations in such a way
that the discretized equation system (using FIT method for
spatial and BDF method for time discretization) has an ex-
ploitable Jacobian structure.

1 Electromagnetic Field Model

The electromagnetic fields can be described by the
full-wave Maxwell’s equations

∇ ·D = ρ, ∇×E =−∂tB
∇ ·B = 0, ∇×H = J+∂tD

equipped with the material laws

D = εE, H = νB,

where D, E, B, H, J and ρ are the displacement field,
electric field, magnetic induction, magnetic field, free
current density and charge density. The material de-
pendent parameters ε and µ are the permittivity and
the magnetic permeability. The charge ρ and the cur-
rent density J can be described by the following model
equations:

ρ =

{
0 for metal and isolator
q(n− p−ND) for semiconductor

(1)

and

J =


σE for metal
Jn +Jp for semiconductor
0 for isolator

(2)

with the electron and hole current densities Jn and Jp
as well as the electron and hole concentrations n and
p satisfying

∂tn−∇ ·Jn +qR(n, p) = 0 (3)
∂t p+∇ ·Jp +qR(n, p) = 0 (4)

with

Jn = qDn∇n−qµnnE, Jp = qDp∇p+qµp pE.

The material depending parameters ND, σ , µn and µp
describe the doping concentration, the conductivity,
the mobility of electrons and the mobility of holes.
The function R gives the recombination rate for elec-
trons and holes. Finally, q is the elementary charge
and Dn, Dp are the diffusion coefficents.

Notice, the semiconductor current density model
reflects the drift-diffusion model [9] and should be ex-
tended by an additional current density part caused by
the self-induced Lorentz force in case of circuits with
fast-transient signals, see [8].

To facilitate the coupling between the electromag-
netic field simulation with a lumped circuit simula-
tion, the Maxwell equations are written in potential
form using the scalar potential ϕ and the vector po-
tential A [1, 2] satisfying

B = ∇×A, ∇ϕ =−E−∂tA. (5)

The existence of these potentials follows from the
Gauß’ law ∇ ·B = 0 for magnetism and the Maxwell-
Faraday law ∇×E =−∂tB. For uniqueness of A and
ϕ , we need a gauge condition. Because of numerical
stability reasons [3], we choose the Lorenz gauging

∇ ·A+ c∂tϕ = 0 (6)

with a suitable constant c. Using (5), the full Maxwell
equations reduce to

∇ · (ε∇ϕ + ε∂tA) = −ρ (7)
∇× (ν∇×A)+∂t(ε∇ϕ + ε∂tA) = J (8)

with ρ and J given by (1) and (2) in which E is re-
placed by −∇ϕ − ∂tA. Finally, a new variable, the
pseudo-canonical momentum Π = ∂tA is introduced
to avoid the second-order time derivative [7].

2 Lumped Circuit Equations

For lumped circuit models, the Kirchhoff’s laws are
satisfied and can be written as

Ai = 0, v = A>e (9)

with the incidence matrix A mapping branches to
nodes of the circuit. The circuit variables are the vec-
tor i of all branch currents, the vector v of all branch
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voltages and the vector e of all nodal potentials. In
contrast to the field variables, the circuit variables de-
pend on time t only. Additionally, we have the consti-
tutive element equations

i1 = d
dt q(v1, t)+g(v1, t), v2 =

d
dt φ(i2, t)+ r(i2, t)

for lumped current and voltage controlling elements,
respectively. Notice, all basic types as capacitances,
inductances, resistances and sources are covered by a
suitable choice of the functions q, g, φ and r.

Splitting the branches of the incidence matrix into
A = (A1,A2,A3) with respect to the current control-
ling, voltage controlling and electromagnetic field el-
ement models, the circuit equations can be written
in the compact form of the Modified Nodal Analysis
(MNA) as [6, 7]

A1
d
dt q(A>1 e, t)+A1g(A>1 e, t)+A2i2 +A3i3 = 0 (10)

d
dt φ(i2, t)+ r(i2, t)−A>2 e = 0 (11)

together with v3 = A>3 e.

3 Interface Model

We assume the interface between the electromagnetic
field model and the lumped circuit model to be per-
fectly electric conducting such that B · n⊥ = 0 and
E ·n‖ = 0 with n⊥ and n‖ being the outer unit normal
vectors transversal and parallel to the contact bound-
ary. This motivates the boundary conditions [3]

(∇×A) ·n⊥ = 0, (∇ϕ) ·n‖ = 0. (12)

Denoting by Γk the k-th contact of the electromagnetic
field model element with Γ0 being the reference con-
tact and choosing any position xk ∈ Γk, we obtain the
coupling equations

ik3 =
∫

Γk

[J−∂t(ε(∇ϕ +Π))] ·n⊥ dσ

vk
3 = ϕ(xk)−ϕ(x0)

that can be bundled as

i3 = BJJ+Bϕ ∂tϕ +BΠ ∂tΠ , (13)

A>3 e = Rϕ ϕ. (14)

with linear boundary operators BJ, Bϕ , BΠ and Rϕ .

4 Coupled Model Structure

Discretizing the electromagnetic field model in space
by the FIT discretization as described in [2, 3] and
using as time discretization the BDF methods for the
resulting differential algebraic system as given in [5],
we obtain a Jacobian structure of the form

J =

 JE JEB 0
JBE I JBC
0 JCB JC


with a diagonally dominant matrix JE for the elec-
tromagnetic and a positiv semidefinite matrix JC for
the lumped circuit part, respectively, if the time steps
and mesh size are sufficiently small and if we take
the variable order ϕ , A, J, n, p, i3, e, i2 as well as
the coupled equation system order (7), (8), (2), (3),
(4), (13), (10), (11). Some details about JC and JE are
given in [3, 4]. Important is here that we plug in the
discretized versions of the equations (12), (14), (1),
(6) and Π = ∂tA before. It allows to combine an effi-
cient iterative solver for the high dimensional (due to
3D discretization) matrix part JE resolving ϕ , A, J, n,
p with a simple evaluation process for the determina-
tion of the coupling current i3 and a direct solver for
the elimination of the circuit variables e and i2 after
use of a Schur complement approach.
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