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Summary. This contributions addresses iterative coupling
schemes for coupled model descriptions in computational
electromagnetics. Theoretical issues of accuracy, stability
and numerical efficiency of the resulting formulations are
addressed along with advantages and disadvantages of the
various approaches. Three application examples are given:
field-circuit coupling, a mechanical-electromagnetic and ther-
mal-electromagnetic problem.

1 Introduction

Today, due to increased accuracy of modeling and
simulation, multiphysical problems become more and
more important in many engineering applications. Of-
ten a monolithic approach, i.e., the solution of all sub-
problems at once, is cumbersome or even impossible
because incompatible algorithms or software pack-
ages are involved. Thus simulation engineers need to
couple subproblems in an efficient and stable way,
where subdomains are solved separately. This intro-
duces a splitting error, which is mitigated by an itera-
tive procedure.

In this contribution we like to advertise the in-
creased accuracy and stability due to iterative pro-
cedures by discussing three examples: field-circuit
coupling in Section 1, a mechanical-electromagnetic
problem in Section 2 and finally a thermal-electro-
magnetic problem in Section 3. In the full contribu-
tion also implementation issues and the practical rel-
evance of those iteration schemes will be discussed.

2 Field-Circuit Problem

For field-circuit coupled models of electrical energy
transducers, two general approaches are well estab-
lished. A first approach consists of extracting lumped
parameters or surrogate models from a field model
and inserting these as a netlist into a Spice-like circuit
simulator. This is circumvented by monolithic cou-
pling, where field and circuit models are solved to-
gether. We propose a particular synthesis: the param-
eter extraction is applied iteratively on time intervals.
The eddy-current field problem on Ω is

σ∂ta(n)+∇×
(

ν(|∇×a(n)|) ∇×a(n)
)
= χj(n)
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Fig. 1. Simple field-circuit coupled problem.

where a(n) is the magnetic vector potential after the n-
th iteration (with homogeneous Dirichlet conditions),
σ and ν are conductivity and reluctivity, respectively
and the winding functions χ = [χ1, . . . ,χk, . . . ,χK ]

>

are functions of space that distribute the lumped cur-
rents j in the 3D domain. The circuit coupling is es-
tablished via integration

∂t

∫
Ω

χka(n) dx+Rk j(n)k = v(n−1)
k k = 1, . . . ,K

to the circuit system of differential algebraic equa-
tions

AC∂tqC(AT
Cu(n), t)+ARgR(AT

Ru, t)+ALi(n)L

+AMj(n)+AVi(n)V +AIis(t) = 0,

∂tΦL(i
(n)
L , t)−AT

Lu = 0,

AT
Vu−vs(t) = 0,

with incidence matrices A∗ where v∗ = AT
∗u and con-

stitutive laws for conductances, inductances and ca-
pacitances (functions with subscripts R, L and C), in-
dependent sources is and vs, unknowns are the poten-
tials u and currents iL and iV.

In the full paper the convergence, [1, 2], of this it-
eration scheme and tailored time integration will be
discussed. It will be shown that the optimal time inte-
gration order depends on the iteration counter n, [6].

3 Field-Mechanical Problem

The Lorentz detuning of an accelerating cavity, which
is the change of the resonant frequency due to the me-
chanical deformation of the cavity wall induced by the



2

Fig. 2. One cavity cell with field lines and exaggerated de-
formation, [3]

electromagnetic pressure is a coupled electromagnetic-
mechanical problem. In a first step, Maxwell’s eigen-
problem is solved

∇×
(

1
µ0

∇× e(n)
)
= ω

2
0 ε0e(n) on Ω

(n−1)

where e is the phasor of the electric field with ad-
equate boundary conditions; µ0 and ε0 are the per-
meability and permittivity of vacuum. From this the
magnetic field h can be obtained. Both fields create a
radiation pressure at the boundary of Ω (n−1)

p(n) =−1
2

ε0e(n)⊥
(

e(n)⊥
)∗

+
1
2

µ0h(n)
‖

(
h(n)
‖

)∗
which gives raise to the linear elasticity problem in
the wall of the cavity

∇ ·
(

2η∇
(S)u+λ I∇ ·u

)
= 0

for the displacement u(n) where p(n) is a boundary
condition on the inner boundary. We denote by ∇(S)

the symmetric gradient, while η and λ are the Lamé
constants. Finally a deformed domain

Ω
(n) ≡

{
x+u(n) (x) , x ∈Ω

(0)
}
,

is derived from the initial domain Ω (0) and the it-
eration can be restarted with the computation of an
eigenvalue. In the full paper this scheme will be dis-
cussed in more details. The focus will be on the spatial
discretization with Isogeometric Analyses using Non-
Uniform Rational B-Spline (NURBS) and De-Rham-
conforming B-Splines [3].

4 Field-Thermal Problem

In the previous sections we have discussed the mutual
coupling of transient and frequency-domain to static
problems. The third example revisits the well-known
iterative coupling of frequency to time domain prob-
lems. Again, the electromagnetic field is given by the
curl-curl equation, however since we are in frequency
domain we can regard displacement currents

εω
2a(n)+σ(T (n−1)) jωa(n)+∇× (ν∇×a(n)) = χj.

where a is now a complex phasor. This is coupled to
the heat equation

ρ c∂tT (n) = ∇ · (k∇T (n))+Q(a(n), t)

by the Joule losses Q, where k is the heat conductivity,
ρ the density and c the specific heat capacity. Besides
the electric conductivity σ , all material parameters are
constant. The important modelling step is to relax the
coupling of both problems by introducing a averaged
heat source

Q̄(n) :=
1

t1− t0

∫ t1

t0
Q(a(n)(t), t)ds.

obtained by converting the vector potential a back
to the time domain. Convergence will be discussed
in view of the works [4, 5] and the fractional step
method, [7].
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